Skip to main content
Log in

Experimental investigation and visualization on thermal runaway of hard prismatic lithium-ion batteries used in smart phones

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, we demonstrate first time the application of confinement tests under excessive heating to track the thermal responses during the thermal runaway in hard prismatic lithium-ion batteries used in smart phones. Seven hard prismatic lithium-ion batteries used in smart phones of iPhone 5, iPhone 6, Redmi 2, SAMSUNG Note 3, SAMSUNG S5, SONY C3 and SONY Z3 at full-charged state have been studied. Characteristics in relation to thermodynamics such as onset temperature, crucial temperature, maximum self-heat rate and maximum temperature are measured and assessed. SAMSUNG S5 shall carry the most unstable feature with an exothermic onset temperature as low as 117 °C. SAMSUNG Note 3 displays the worst-case scenario by possessing the maximum temperature and maximum self-heat rate reaching the extremity of 675.6 °C and 11,860.0 °C min−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

C p :

Specific heat capacity (J kg−1 K−1)

E a :

Activation energy ( kJ mol−1)

\(\dot{Q}\) :

Heat rate (W m−3)

\(\dot{Q}_{\text{abuse}}\) :

Heat rate of abusive conditions in lithium-ion battery (W m−3)

\(\dot{Q}_{\text{accu}}\) :

Heat rate accumulated in lithium-ion battery (W m−3)

\(\dot{Q}_{\text{comb}}\) :

Heat generation rate from combustion reaction of electrolyte (W m−3)

\(\dot{Q}_{\text{dissipated}}\) :

Heat dissipation rate from combustion reaction of electrolyte (W m−3)

\(\dot{Q}_{{{\text{ele}} - {\text{chem}}}}\) :

Heat generation rate from electrical–chemical reaction conversion (W m−3)

\(\dot{Q}_{\text{generated}}\) :

Heat generation rate from combustion reaction of electrolyte (W m−3)

\(\dot{Q}_{\text{ne}}\) :

Heat generation rate from reaction of lithiated anode material with electrolyte (W m−3)

\(\dot{Q}_{\text{pe}}\) :

Heat generation rate from reaction of delithiated cathode material with electrolyte (W m−3)

\(\dot{Q}_{\text{sei}}\) :

Heat generation rate from SEI decomposition (W m−3)

R :

Universal gas constant (8.314 J mol−1 K−1)

T A :

Corrected temperature of HPLIB under thermal runaway (°C or K)

T A0 :

Corrected onset temperature of HPLIB under thermal runaway (°C or K)

T amb :

Ambient temperature (°C or K)

T ave :

Averaged temperature of the lithium-ion battery (°C or K)

T cr :

Crucial temperature of hard prismatic lithium-ion battery under thermal runaway (°C or K)

T M :

Measured temperature of HPLIB under thermal runaway (°C or K)

T M0 :

Measured onset temperature of HPLIB under thermal runaway (°C or K)

T max :

Maximum temperature of hard prismatic lithium-ion battery under thermal runaway (°C or K)

T max-rate :

Temperature with the maximum self-heat rate (°C or K)

T onset :

Exothermic onset temperature of hard prismatic lithium-ion battery under thermal runaway (°C or K)

T runaway :

Runaway temperature of the lithium-ion battery (°C or K)

(dT/dt):

Self-heat rate (°C min−1)

(dT/dt)max :

Maximum self-heat rate (°C min−1)

Ε :

Emissivity of the battery surface (dimensionless)

k :

Conductivity of the domain (W m−1 K−1)

▽:

Gradient operator (dimensionless)

λ :

Thermal conductivity (W m−1 K−1)

ρ :

Density (kg m−3)

ψ :

Thermal inertia (dimensionless)

σ :

Electrical conductivity of lithium ion in the electrode (S m−1)

ad:

Adiabatic

cr:

Crucial

max:

Maximum

max-rate:

Maximum rate

References

  1. Exponent, SAMSUNG Recall Support Note7 investigation root cause analysis, 23 Jan 2017.

  2. TÜV Rheinland, Investigating battery safety: logistics and assembly, 23 Jan 2017.

  3. UL, Failure analysis of SAMSUNG Note 7, 23 Jan 2017.

  4. Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells. J Power Sources. 2003;113:81–100.

    Article  CAS  Google Scholar 

  5. Lisbona D, Snee T. A review of hazards associated with primary lithium and lithium-ion batteries. Process Saf Environ Prot. 2011;89:434–42.

    Article  CAS  Google Scholar 

  6. Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C. Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources. 2012;208:210–24.

    Article  CAS  Google Scholar 

  7. Richard MN, Dahn JR. Accelerating rate calorimetry study on the thermal study of lithium intercalated graphite in electrolyte. I. Experimental. J Electrochem Soc. 1999;146(6):2068–77.

    Article  CAS  Google Scholar 

  8. Richard MN, Dahn JR. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. II. modeling the results and predicting differential scanning calorimeter curves. J Electrochem Soc. 1999;146(6):2078–84.

    Article  CAS  Google Scholar 

  9. Hatchard TD, MacNeil DD, Basu A, Dahn JR. Thermal model of cylindrical and prismatic lithium-ion cells. J Electrochem Soc. 2001;148(7):A755–61.

    Article  CAS  Google Scholar 

  10. Santhanagoplan S, Ramadass P, Zhang JZ. Analysis of internal short-circuit in a lithium ion cell. J Power Sources. 2009;194:550–7.

    Article  CAS  Google Scholar 

  11. Coman PT, Darcy EC, Veje CT, White RE. Modeling Li-ion cell thermal runaway triggered by an internal short circuit device using an efficiency factor and Arrhenius formulation. J Electrochem Soc. 2017;164(4):A587–93.

    Article  CAS  Google Scholar 

  12. Ishikawa H, Mendoza O, Sone Y, Umeda M. Study of thermal deterioration of lithium-ion secondary cell using an accelerated rate calorimeter (ARC) and AC impedance method. J Power Sources. 2012;198:236–42.

    Article  CAS  Google Scholar 

  13. Waldmann T, Wohlfahrt-Meherens M. Effects of rest time after Li plating on safety behavior-ARC tests with commercial high-energy 18650 Li-ion cells. Electrochim Acta. 2017;230:454–60.

    Article  CAS  Google Scholar 

  14. Feng X, Fang M, He X, Ouyang M, Lu L, Wang H, Zhang M. Thermal runaway features of large format prismatic lithium-ion battery using extended volume accelerating rate calorimetry. J Power Sources. 2014;255:294–301.

    Article  CAS  Google Scholar 

  15. Duh YS, Tsai MT, Kao CS. Thermal runaway on 18650 lithium-ion batteries containing cathode materials with and without the coating of self-terminated oligomers with hyper-branched architecture (STOBA) used in electric vehicles. J Therm Anal Calorim. 2017;129:1935–48.

    Article  CAS  Google Scholar 

  16. Hsieh TY, Duh YS, Kao CS. Evaluation of thermal hazard for commercial 14500 lithium-ion batteries. J Therm Anal Calorim. 2014;116:1491–5.

    Article  CAS  Google Scholar 

  17. Ou WJ, Duh YS, Kao CS, Hsu JM. Thermal instabilities of organic carbonates with discharged cathode materials in lithium-ion batteries. J Therm Anal Calorim. 2014;116:1111–6.

    Article  CAS  Google Scholar 

  18. Duh YS, Ou WJ, Kao CS, Hsu JM. Thermal instabilities of organic carbonates with charged cathode materials in lithium-ion batteries. J Therm Anal Calorim. 2014;116:1105–10.

    Article  CAS  Google Scholar 

  19. Li YC, Duh YS, Hsu JM, Kao CS. Thermal instability of organic esters and ethers with deposited lithium in lithium-ion battery. J Therm Anal Calorim. 2014;116:1219–26.

    Article  CAS  Google Scholar 

  20. Sun YY, Hsieh TY, Duh YS, Kao CS. Thermal behaviors of electrolytes in lithium-ion batteries determined by differential scanning calorimeter. J Therm Anal Calorim. 2014;116:1175–9.

    Article  CAS  Google Scholar 

  21. ASTM E476-87. Standard test method for thermal instability of confined condensed phase systems (confinement test). American Society for Testing and Materials; 2001.

  22. Samba A, Omar N, Gualous H, Firouz Y, Van den Bossche P, Mierlo JV, Boubekeur TI. Development of an advanced two-dimensional thermal model for large size lithium-ion pouch cell. Electrochim Acta. 2014;117:246–54.

    Article  CAS  Google Scholar 

  23. Lide DR. CRC handbook of chemistry and physics. 83rd ed. Taylor & Francis; 2002.

  24. Golubkov AW, Fuchs D, Wagner J, Wiltsche H, Stangl C, Fauler G, Voitic G, Thaler A, Hacker V. Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivine-type cathodes. R Soc Chem Adv. 2014;4:3633–42.

    CAS  Google Scholar 

  25. Fu Y, Lu S, Li K, Liu C, Cheng X, Zhang H. An experimental study on burning behaviors of 18650 lithium-ion batteries using a cone calorimeter. J Power Sources. 2015;273:216–22.

    Article  CAS  Google Scholar 

  26. Zeldowitsch JB, Frank-Kamenetzki DA. A theory of thermal propagation of flame. In: Pelcé P, editor. Dynamics of curved fronts. London: Academic Press. Inc.; 1998. p. 131–40.

    Google Scholar 

  27. Jhu CY, Wang YW, Shu CM, Chang JC, Wu HC. Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter. J Hazard Mater. 2012;192:99–107.

    Google Scholar 

  28. Roth EP, Doughty DH. Thermal abuse performance of high-power 18650 Li-ion cells. J Power Sources. 2004;128:308–18.

    Article  CAS  Google Scholar 

  29. Larsson F, Mellander BE. Abuse by external heating, overcharge and short circuiting of commercial lithium-ion battery cells. J Electrochem Soc. 2014;161:A1611–7.

    Article  CAS  Google Scholar 

  30. Röder P, Stiaszny B, Ziegler JC, Baba N, Lagaly P, Wiemhofer HD. The impact of calendar aging on the thermal stability of a LiMn2O4-Li(Ni1/3Mn1/3Co1/3) O2/graphite lithium-ion cell. J Power Sources. 2014;268:315–25.

    Article  CAS  Google Scholar 

  31. Finegan DP, Scheel M, Robinson JB, Tjaden B, Hunt I, Mason TJ, Millchamp J, Michiel MD, Offer GJ, Hinds G, Brett DJL, Shearing PR. In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nat Commun. 2015;6:7924–33.

    Article  CAS  Google Scholar 

  32. Liu X, Wu Z, Stoliarov SI, Denlinger M, Masias A, Snyder K. Heat release during thermally-induced failure of a lithium-ion battery: impact of cathode decomposition. Fire Saf J. 2016;85:10–22.

    Article  CAS  Google Scholar 

  33. Peng P, Jiang F. Thermal behavior analyses of stacked prismatic LiCoO2 lithium-ion batteries during oven tests. Int J Heat Mass Trans. 2015;88:411–23.

    Article  CAS  Google Scholar 

  34. Duh YS, Lee CY, Chen YL, Kao CS. Characterization on the exothermic behaviors of cathode materials reacted with ethylene carbonate in lithium-ion battery studied by differential scanning calorimeter (DSC). Thermochim Acta. 2016;642:88–94.

    Article  CAS  Google Scholar 

  35. Fisher HG, Forrest HS, Grossel SS, Huff JE, Muller AR, Noronha JA, Shaw DA, Tilley BJ. Emergency relief system design using DIERS technology: the design institute for emergency relief systems (DIERS) project manual. New York: AIChE; 1992.

    Google Scholar 

  36. Wang YW, Duh YS, Shu CM. Evaluation of adiabatic runaway reaction and vent sizing for emergency relief from DSC. J Therm Anal Calorim. 2006;85:225–34.

    Article  CAS  Google Scholar 

  37. MacNeil DD, Christensen L, Landucci J, Paulsen JM, Dahn JR. An autocatalytic mechanism for the reaction of LixCoO2 in electrolyte at elevated temperature. J Electrochem Soc. 2000;147(3):970–9.

    Article  CAS  Google Scholar 

  38. MacNeil DD, Dahn JR. Test of reaction kinetics using both differential scanning and accelerating rate calorimeter as applied to the reaction of LixCoO2 in non-aqueous electrolytes. J Phys Chem A. 2001;105:4430–9.

    Article  CAS  Google Scholar 

  39. Duh YS, Tsai MT, Kao CS. Characterization on the thermal runaway of commercial 18650 lithium-ion batteries used in electric vehicle. J Therm Anal Calorim. 2017;127:983–93.

    Article  CAS  Google Scholar 

  40. Duh YS, Chen YL, Kao CS. Thermal stability of ethylene carbonate reacted with delithiated cathode materials in lithium-ion batteries. J Therm Anal Calorim. 2017;127:995–1007.

    Article  CAS  Google Scholar 

  41. MacNeil DD, Dahn JR. The reaction of charged cathodes with nonaqueous solvents and electrolytes: I. Li0.5CoO2. J Electrochem Soc. 2001;148:1205–10.

    Article  Google Scholar 

  42. Konishi H, Yuasa T, Yoshikawa M. Thermal stability of Li1-yNixMn(1−x)/2Co(1-x)/2O2 layer-structured cathode materials used in Li-ion batteries. J Power Sources. 2011;196:6884–8.

    Article  CAS  Google Scholar 

  43. Furushima Y, Yanagisawa C, Nakagawa T, Aoki Y, Muraki N. Thermal stability and kinetics of delithiated LiCoO2. J Power Sources. 2011;196:2260–3.

    Article  CAS  Google Scholar 

  44. Venkatachalapathy R, Lee CW, Lu W, Prakash J. Thermal investigations of transition metal oxide cathodes in Li-ion cells. Electrochem Commun. 2000;2:104–7.

    Article  CAS  Google Scholar 

  45. Maleki H, Al Hallaj S, Selman JR, Dinwiddle RB, Wang H. Thermal properties of lithium-ion battery and components. J Electrochem Soc. 1999;146(3):947–54.

    Article  CAS  Google Scholar 

  46. Spinner NS, Mazurick R, Brandon A, Rose-Pehrsson SL, Tuttle SG. Analytical, numerical and experimental determination of thermophysical properties of commercial 18650 LiCoO2 lithium-ion battery. J Electrochem Soc. 2015;162(14):A2789–95.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank National Science Council, R.O.C., for financial support of this study under contract No. MOST 104-2221-E-239-002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Shan Kao.

Appendix

Appendix

Calculation of specific heat capacity and thermal inertia of commercial prismatic lithium-ion batteries.

1 Specific heat capacity and thermal inertia of a 25,000-mAh prismatic battery manufactured by the AE Energy Co. Ltd.

The specific heat capacity and thermal inertia are calculated from the data in Fig. 2 from the literature of Feng et al. [14]. The reference has been cited in the manuscript. The mass and heat capacity of individual constituent of a lithium-ion battery are rearranged in Table 3. In addition to the specific heat capacity, the thermal inertia can be calculated by respective mass and heat capacity of the components in the prismatic battery.

Table 3 Mass and specific heat capacity of the components in a 25,000-mAh prismatic battery [14]

From the data of Table 3, the corresponding specific heat capacity of a 25,000-mAh prismatic battery is calculated by the following. Cp = ΣM i Cp i M i  = (14 × 1.184 + 25 × 1.134 + 15 × 2.092 + 2 × 2.066 + 33 × 0.900 + 8 × 0.385 + 3 × 0.903)/100 = 1.16 J g−1 K−1. This is in good agreement with the experimental data reported in the literature [15, 44,45,46].

Thermal inertia can be defined as ΣMiCpiMriCpri; in addition, both the anode and cathode took part in the reaction. The mass of the reaction system can be assumed to be the summation of anode material, cathode material and electrolyte. Thus, for reaction system, ΣMriCpri = 14 × 1.184 (graphite) + 25 × 1.134 (cathode material) + 15 × 2.092 (electrolyte) = 76.306. Therefore, the thermal inertia of this prismatic battery is calculated to be about 1.52 (= ΣMiCpiMriCpri = 116/76.306).

2 Specific heat capacity and thermal inertia of the commercial 18650 lithium-ion batteries have reported to be about 0.87 J g−1 K−1 and 1.71 [15, 44]

Content of this section can be found in [15] which is our previous JTAC publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duh, YS., Lin, K.H. & Kao, CS. Experimental investigation and visualization on thermal runaway of hard prismatic lithium-ion batteries used in smart phones. J Therm Anal Calorim 132, 1677–1692 (2018). https://doi.org/10.1007/s10973-018-7077-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7077-2

Keywords

Navigation