Skip to main content
Log in

Thermal instability of organic esters and ethers with deposited lithium in lithium-ion battery

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal instabilities of deposited lithium with electrolytes in lithium-ion batteries are simulated by the reactions between metallic lithium with organic esters and ethers. Exothermic onset temperatures and enthalpy changes are measured and analyzed by differential scanning calorimetry. In this study, heat of reactions in lithium with eight different formations of esters and ethers are determined which are consistent to the data of lithiated graphite (LiC6) reacted with electrolytes in literature. Furthermore, violently exothermic reactions with enthalpy larger than 1,000 J g−1 and onset temperature lower than 120 °C are further conducted by the confinement test to verify the worst scenarios and consequences of lithium-ion batteries encountered any kind of abuses. Thermal instability of metallic lithium with organic esters in descending order determined to be Li + EB (70 °C)>Li + MB (73.1 °C)>Li + EA (90.8 °C). Finally, thermal hazard data such as onset temperature, maximum self-heat rate, maximum temperature, and maximum pressure of lithium reacted with esters and ethers are compared, evaluated, and some conclusion and suggestions are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Koksbang R, Barker J, Shi H, Saidi MY. Cathode materials for lithium rocking chair batteries. Solid State Ion. 1996;84:1–21.

    Article  CAS  Google Scholar 

  2. Whittingham MS. Lithium batteries and cathode materials. Chem Rev. 2004;104:4271–301.

    Article  CAS  Google Scholar 

  3. Goodenough JB. Cathode materials: a personal perspective. J Power Sources. 2007;174:996–1000.

    Article  CAS  Google Scholar 

  4. Ohzuku T, Brodd RJ. An overview of positive-electrode materials for advanced lithium-ion batteries. J Power Sources. 2007;174:449–56.

    Article  CAS  Google Scholar 

  5. Yazami R, Touzain P. A reversible graphite–lithium negative electrode for electrochemical generators. J Power Sources. 1983;9:365–71.

    Article  CAS  Google Scholar 

  6. Yazami R, Guerard D. Some aspects on the preparation, structure and physical and electrochemical properties of Li x C6. J Power Sources. 1993;15:39–46.

    Article  Google Scholar 

  7. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB. Li x CoO2 (0 < x < 1): a new cathode material for batteries of high energy density. Mater Res Bull. 1980;15:783–9.

    Article  CAS  Google Scholar 

  8. Thomas M, Bruce PG, Goodenough JB. Lithium mobility in the layered oxide Li1−x CoO2. Solid State Ion. 1985;17:13–9.

    Article  CAS  Google Scholar 

  9. Nagaura T, Tozawa K. Lithium ion rechargeable battery. Prog Batteries Sol Cells. 1990;9:209–17.

    CAS  Google Scholar 

  10. Ozawa K. Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ion. 1994;69:212–21.

    Article  CAS  Google Scholar 

  11. Fong F, Sacken FU, Dahn JR. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J Electrochem Soc. 1990;137:2009–13.

    Article  CAS  Google Scholar 

  12. Xu K. Nonaqueous liquid electrolyte for lithium-based rechargeable batteries. Chem Rev. 2004;104:4303–417.

    Article  CAS  Google Scholar 

  13. Sasaki Y. Organic electrolytes of secondary lithium batteries. Electrochemistry. 2007;76:2–15.

    Article  Google Scholar 

  14. Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells. J Power Sources. 2003;113:81–100.

    Article  CAS  Google Scholar 

  15. Lisbona D, Snee T. A review of hazards associated with primary lithium and lithium-ion batteries. Process Saf Environ Prot. 2011;89:434–42.

    Article  CAS  Google Scholar 

  16. Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C. Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources. 2012;208:210–24.

    Article  CAS  Google Scholar 

  17. Tobishima S, Yamaki J. A consideration of lithium cell safety. J Power Sources. 1999;81–82:882–6.

    Article  Google Scholar 

  18. MacNeil DD, Lu Z, Chen Z, Dahn JR. A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes. J Power Sources. 2002;108:8–14.

    Article  CAS  Google Scholar 

  19. Venkatachalapathy R, Lee CW, Lu W, Prakash J. Thermal investigations of transitional metal oxide cathodes in Li-ion cell. Electrochem Commun. 2000;2:104–7.

    Article  CAS  Google Scholar 

  20. Yamaki J, Baba Y, Katayama N, Takatsuji H, Egashira M, Okada S. Thermal stability of electrolytes with Li x CoO2 cathode or lithiated carbon anode. J Power Sources. 2003;119–121:789–93.

    Article  Google Scholar 

  21. Xia Y, Fujieda T, Tatsumi K, Prosini PP, Sakai T. Thermal and electrochemical stability of cathode materials in solid polymer electrolyte. J Power Sources. 2001;92:234–43.

    Article  CAS  Google Scholar 

  22. Zhang Z, Fouchard D, Rea JR. Differential scanning calorimetry material studies: implications for the safety of lithium-ion cells. J Power Sources. 1998;70:16–20.

    Article  CAS  Google Scholar 

  23. Jiang J, Dahn JR. Effects of solvents and salts on the thermal stability of LiC6. Electrochem Commun. 2004;6:39–43.

    Article  CAS  Google Scholar 

  24. Wang Y, Jiang J, Dahn JR. The reactivity of delithiated Li(Ni1/3Co1/3Mn1/3)O2, Li(Ni0.8Co0.15Al0.05)O2 or LiCoO2 with non-aqueous electrolyte. Electrochem Commun. 2007;9:2534–40.

    Article  CAS  Google Scholar 

  25. MacNeil DD, Dahn JR. The reaction of charged cathodes with nonaqueous solvents and electrolytes: I. Li0.5CoO2. J Electrochem Soc. 2001;148:A1205–10.

    Article  CAS  Google Scholar 

  26. Watanabe I, Yamaki J. Thermalgravimetry–mass spectrometry studies on the thermal stability of graphite anodes with electrolyte I lithium-ion battery. J Power Sources. 2006;153:402–4.

    Article  CAS  Google Scholar 

  27. TA4000 operation instructions. Kusnacht: Mettler Company; 1993.

  28. ASTM E537-07. Standard test method for assessing the stability of chemicals by methods of differential thermal analysis; (2007).

  29. ASTM E476-87. Standard test method for thermal instability of confined condensed phase system (Confinement Test); (1993).

  30. Hsieh TY, Duh YS, Kao CS. Evaluation of thermal hazard for commercial 14500 lithium-ion batteries. 41st North American Thermal Analysis Society (NATAS) Annual Conference, USA, 2013.

  31. Guerard D, Herold A. Intercalation of lithium into graphite and other carbons. Carbon. 1975;13:337–45.

    Article  CAS  Google Scholar 

  32. Billaud D, McRae E, Herold A. Synthesis and electrical resistivity of lithium-pyrographite intercalation compounds (stages I, II and III). Mater Res Bull. 1979;14:8357–864.

    Article  Google Scholar 

  33. Tobishima SI, Yamaki JI, Okada T. Ethylene carbonate/ether mixed solvents electrolyte for lithium batteries. Electrochim Acta. 1984;29:1471–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Kao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y.C., Duh, Y.S., Hsu, J.M. et al. Thermal instability of organic esters and ethers with deposited lithium in lithium-ion battery. J Therm Anal Calorim 116, 1219–1226 (2014). https://doi.org/10.1007/s10973-014-3689-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3689-3

Keywords

Navigation