Skip to main content
Log in

Low-temperature thermal degradation behaviour of non-wood soda lignins and spectroscopic analysis of residues

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Soda lignins from three non-wood species, namely bamboo (Bambusa bambos), giant cane (Arundo donax) and pearl millet (Pennisetum glaucum) were studied for their thermolytic degradation behaviour. TG characterization of the soda lignins were done under nitrogen atmosphere at two heating rates of 10 and 100 °C min−1. After the initial moisture removal, two distinct thermal degradation events were observed. However, thermal degradation at 100 °C min−1 shifted the onset of thermal degradations to higher temperatures. Both the thermal degradation of all the three lignins was found to be exothermic except for first thermal degradation of pearl millet lignin during thermal degradation at 10 °C min−1 which was almost athermic. Batch thermal degradation runs on the three lignins were carried out at different temperatures for varying lengths of time and the FTIR spectra of the thermal degradation residues (TDRs) were recorded. At 200 °C, the marginal mass loss of less than 10% is attributed to moisture loss. At lower temperature of 250 °C, the intramolecular hydrogen bonding through hydroxyl group in the original lignin was broken. Partial to complete decarboxylation also took place. The aromatic structure of the lignin largely remained intact albeit with rearrangements. Short thermal degradation for 1 h at 250 °C yielded 75–80% residue for the three lignins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ghatak HR, Kundu PP, Kumar S. Thermochemical comparison of lignin separated by electrolysis and acid precipitation from soda black liquor of agricultural residues. Thermochim Acta. 2010;502:85–9.

    Article  CAS  Google Scholar 

  2. Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol. 2003;54:519–46.

    Article  CAS  Google Scholar 

  3. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE. Lignin valorization: improving lignin processing in the biorefinery. Science. 2014. https://doi.org/10.1126/science.1246843.

    Google Scholar 

  4. Ghatak HR. Spectroscopic comparison of lignin separated by electrolysis and acid precipitation of wheat straw soda black liquor. Ind Crops Prod. 2008;28:206–12.

    Article  CAS  Google Scholar 

  5. Garcia A, Toledano A, Serrano L, Egues I, Gonzalez M, Marin F, Labidi J. Characterization of lignins obtained by selective precipitation. Sep. Purific. Technol. 2009;68:193–8.

    Article  CAS  Google Scholar 

  6. Fernandez-Rodriguez J, Gordobil O, Robles E, Gonzalez-Alriols M, Labidi J. Lignin valorization from side-streams produced during agricultural waste pulping and total chlorine free bleaching. J. Cleaner Prod. 2016. https://doi.org/10.1016/j.jclepro.2016.10.198.

    Google Scholar 

  7. Wu C, Wang Z, Dupont V, Huang J, Williams PT. Nickel-catalysed pyrolysis/gasification of biomass components. J Anal Appl Pyrol. 2013;99:143–8.

    Article  CAS  Google Scholar 

  8. Gooty AT, Li D, Berruti F, Briens C. Kraft-lignin pyrolysis and fractional condensation of its bio-oil vapors. J Anal Appl Pyrol. 2014;106:33–40.

    Article  Google Scholar 

  9. Kleinert M, Barth T. Phenols from lignin. Chem Eng Technol. 2008;31:736–45.

    Article  CAS  Google Scholar 

  10. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86:1781–8.

    Article  CAS  Google Scholar 

  11. Chen T, Li L, Zhao R, Wu J. Pyrolysis kinetic analysis of the three pseudocomponents of biomass–cellulose, hemicellulose and lignin. J Therm Anal Calorim. 2017;128:1825–32.

    Article  CAS  Google Scholar 

  12. Zhang J, Jiang X, Ye X, Chen L, Lu Q, Wang X, Dong C. Pyrolysis mechanism of a β-O-4 type lignin dimer model compound. J Therm Anal Calorim. 2016;123:501–10.

    Article  CAS  Google Scholar 

  13. Ferdous D, Dalai AK, Bej SK, Thring RW. Production of H2 and medium heating value gas via steam gasification of lignins in fixed-bed reactors. Can J Chem Eng. 2001;79:913–22.

    Article  CAS  Google Scholar 

  14. Ferdous D, Dalai AK, Bej SK, Thring RW. Pyrolysis of Lignins: experimental and kinetics studies. En. Fuels. 2002;16:1405–12.

    Article  CAS  Google Scholar 

  15. Fushimi C, Araki K, Yamaguchi Y, Tsutsumi A. Effect of heating rate on steam gasification of biomass. 1. reactivity of char. Ind Eng Chem Res. 2003;42:3922–8.

    Article  CAS  Google Scholar 

  16. Guan Q, Mao T, Zhang Q, Miao R, Ning P, Gu J, Tian S, Chen Q, Chai X. Catalytic gasification of lignin with Ni/Al2O3–SiO2 in sub/supercritical water. J. Supercritical Fluids. 2014;95:413–21.

    Article  CAS  Google Scholar 

  17. Jiang G, Nowakowski DJ, Bridgwater AV. A systematic study of the kinetics of lignin pyrolysis. Thermochim Acta. 2010;498:61–6.

    Article  CAS  Google Scholar 

  18. Singh R, Prakash A, Dhiman SK, Balagurumurthy B, Arora AK, Puri SK, Bhaskar T. Hydrothermal conversion of lignin to substituted phenols and aromatic Ethers. Bioresource Technol. 2014;165:319–22.

    Article  CAS  Google Scholar 

  19. Farag S, Mudraboyina BP, Jessop PG, Chaouki J. Impact of the heating mechanism on the yield and composition of bio-oil from pyrolysis of kraft lignin. Biomass Bioen. 2016;95:344–53.

    Article  CAS  Google Scholar 

  20. Jie-wang Y, Gui-zhen F, Chun-de J. Hydrogenation of alkali lignin catalyzed by Pd/C. APCBEE Procedia. 2012;3:53–9.

    Article  Google Scholar 

  21. Mattsson C, Andersson S, Belkheiri T, Amand L, Olausson L, Vamling L, Theliander H. Using 2D NMR to characterize the structure of the low and high molecular mass fractions of bio-oil obtained from LignoBoost™ kraft lignin depolymerized in subcritical water. Biomass Bioen. 2016;95:364–77.

    Article  CAS  Google Scholar 

  22. Hatakeyama H, Tsujimoto Y, Zarubin MJ, Krutov SM, Hatakeyama T. Thermal decomposition and glass transition of industrial hydrolysis lignin. J Therm Anal Calorim. 2010;101:289–95.

    Article  CAS  Google Scholar 

  23. Ye X, Lu Q, Jiang X, Wang X, Hu B, Li W, Dong C. Interaction characteristics and mechanism in the fast co-pyrolysis of cellulose and lignin model compounds. J Therm Anal Calorim. 2017;130:975–84.

    Article  CAS  Google Scholar 

  24. Jiang G, Nowakowski DJ, Bridgwater AV. Effect of the temperature on the composition of lignin pyrolysis products. Energy Fuels. 2010;24:4470–5.

    Article  CAS  Google Scholar 

  25. Bai X, Kim KH, Brown RC, Dalluge E, Hutchinson C, Lee YJ, Dalluge D. Formation of phenolic oligomers during fast pyrolysis of lignin. Fuel. 2014;128:170–9.

    Article  CAS  Google Scholar 

  26. Mullen CA, Boateng AA. Catalytic pyrolysis-GC/MS of lignin from several sources. Fuel Proces. Technol. 2010;91:1446–58.

    Article  CAS  Google Scholar 

  27. Li X, Su L, Wang Y, Yu Y, Wang C, Li X, Wang Z. Catalytic fast pyrolysis of Kraft lignin with HZSM-5 zeolite for producing aromatic hydrocarbons. Front. Environ. Sci. Eng. 2012;6:295–303.

    Article  CAS  Google Scholar 

  28. Shen DK, Gu S, Luo KH, Wang SR, Fang MX. The pyrolytic degradation of wood-derived lignin from pulping process. Bioresource Technol. 2010;101:6136–46.

    Article  CAS  Google Scholar 

  29. El Mansouri N, Yuan Q, Huang F. Characterization of lignins for use in phenol formaldehyde and epoxy resins. BioRes. 2011;6:2647–62.

    Google Scholar 

  30. Sharma RK, Wooten JB, Baliga VL, Lin X, Chan WG, Hajaligol MR. Characterization of chars from pyrolysis of lignin. Fuel. 2004;83:1469–82.

    Article  CAS  Google Scholar 

  31. Watkins D, Nuruddin M, Hosur M, Tcherbi-Narteh A, Jeelani S. Extraction and characterization of lignin from different biomass resources. J. Mater. Res. Technol. 2015;4:26–32.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himadri Roy Ghatak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, I.A.K., Ghatak, H.R. Low-temperature thermal degradation behaviour of non-wood soda lignins and spectroscopic analysis of residues. J Therm Anal Calorim 132, 407–423 (2018). https://doi.org/10.1007/s10973-017-6912-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6912-1

Keywords

Navigation