Skip to main content
Log in

Thermal and dynamic mechanical thermal analysis of lignocellulosic material-filled polyethylene bio-composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal and rheological properties of plant-based natural filler-reinforced polyethylene bio-composites applying various filler loadings as well as the impacts of the different compatibilizers were investigated by means of differential scanning calorimetry and dynamic mechanical thermal analysis (DMTA). As lignocellulosic materials, such as rice-husk flour and wood flour, are eco-friendly biomaterials and a thermoplastic polymer, for example, high-density polyethylene, has good physico-mechanical and thermal properties, therefore their bio-composites can combine and utilize these two advantages at the same time. The temperature of the α-relaxation (T α) slightly increased and melting temperatures (T m) of the matrix polymer in the case of the studied bio-composites did not shift significantly as the filler loading changed, because the rigid interphase hinders the motion of polymer segments resulting in the increase in T α and only weak interactions developed at the interface between the matrix polymer and the reinforcement in the case of non-compatibilized composites. However, compatibility between the reinforcement and the matrix polymer was enhanced by incorporating compatibilizers, which further improved stiffness. From the DMTA experiment, the reinforcements result in composite samples having higher storage modulus (E′) than the neat polymer sample, indicating that incorporating lignocellulosic filler increased their stiffness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lai S-M, Yeh F-C, Wang Y, Chan H-C, Shen H-F. Comparative study of maleated polyolefins as compatibilizers for polyethylene/wood flour composites. J Appl Polym Sci. 2003;87:487–96.

    Article  CAS  Google Scholar 

  2. Kim DY, Rhee YH. Biodegradation of microbial and synthetic polyesters by fungi. Appl Microbiol Biotechnol. 2003;61:300–8.

    Article  CAS  Google Scholar 

  3. Kim HS, Yang HS, Kim HJ, Lee BJ, Hwang TS. Thermal properties of agro-flour-filled biodegradable polymer bio-composites. J Therm Anal Calorim. 2005;81:299–306.

    Article  CAS  Google Scholar 

  4. Åkesson D, Vrignaud T, Tissot C, Skrifvars M. Mechanical recycling of PLA filled with a high level of cellulose fibres. J Polym Environ. 2016;24:185–95.

    Article  Google Scholar 

  5. Graupner N, Albrecht K, Ziegmann G, Enzler H, Müssig J. Influence of reprocessing on fibre length distribution, tensile strength and impact strength of injection moulded cellulose fibre-reinforced polylactide (PLA) composites. Express Polym Lett. 2016;10:647–63.

    Article  CAS  Google Scholar 

  6. Blanco I, Cicala G, Latteri A, Saccullo G, El-Sabbagh AMM, Ziegmann G. Thermal characterization of a series of lignin-based polypropylene blends. J Therm Anal Calorim. 2017;127:147–53.

    Article  CAS  Google Scholar 

  7. Szabó G, Romhányi V, Kun D, Renner K, Pukánszky B. Competitive interactions in aromatic polymer/lignosulfonate blends. ACS Sustain Chem Eng. 2017;5:410–9.

    Article  Google Scholar 

  8. Brostow W, Datashvili T, Jiang P, Miller H. Recycled HDPE reinforced with sol–gel silica modified wood sawdust. Eur Polym J. 2016;76:28–39.

    Article  CAS  Google Scholar 

  9. Perez-Fonseca AA, Robledo-Ortíz JR, Gonzalez-Nuñez R, Rodrigue D. Effect of thermal annealing on the mechanical and thermal properties of polylactic acid-cellulosic fiber biocomposites. J Appl Polym Sci. 2016;133:43750.

    Article  Google Scholar 

  10. Zhang F, Qiu W, Yang L, Endo T, Hirotsu T. Crystallization and melting behaviors of maleated polyethylene and its composite with fibrous cellulose. J Appl Polym Sci. 2003;89:3292–300.

    Article  CAS  Google Scholar 

  11. Väisänen T, Haapala A, Lappalainen R, Tomppo L. Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: a review. Waste Manage. 2016;54:62–73.

    Article  Google Scholar 

  12. Bengtsson M, Baillif ML, Oksman K. Extrusion and mechanical properties of highly filled cellulose fibre–polypropylene composites. Compos Part A Appl Sci. 2007;38:1922–31.

    Article  Google Scholar 

  13. Yang HS, Kim HJ, Park HJ, Lee BJ, Hwang TS. Water absorption behavior and mechanical properties of lignocellulosic filler-polyolefin bio-composites. Compos Struct. 2006;72:429–37.

    Article  Google Scholar 

  14. Ichazo MN, Albano C, Gonzalez J, Perera R, Candal MV. Polypropylene/wood flour composites: treatments and properties. Compos Struct. 2001;54:207–14.

    Article  Google Scholar 

  15. Yang HS, Kim HJ, Son J, Park HJ, Lee BJ, Hwang TS. Rice-husk flour filled polypropylene composites; mechanical and morphological study. Compos Struct. 2004;63:305–12.

    Article  Google Scholar 

  16. Lee SY, Yang HS, Kim HJ, Jeong CS, Lim BS, Lee JN. Creep behavior and manufacturing parameters of wood flour filled polypropylene composites. Compos Struct. 2004;65:459–69.

    Article  Google Scholar 

  17. Raj RG, Kokta BV, Dembele F, Sanschagrain B. Compounding of cellulose fibers with polypropylene: effect of fiber treatment on dispersion in the polymer matrix. J Appl Polym Sci. 1989;38:1987–96.

    Article  CAS  Google Scholar 

  18. Felix JM, Gatenholm P. The nature of adhesion in composites of modified cellulose fibers and polypropylene. J Appl Polym Sci. 1991;42:609–20.

    Article  CAS  Google Scholar 

  19. Gauthier R, Joly C, Coupas AC, Gauthier H, Escoubes M. Interfaces in polyolefin/cellulosic fiber composites: chemical coupling, morphology, correlation with adhesion and aging in moisture. Polym Compos. 1998;19:287–300.

    Article  CAS  Google Scholar 

  20. Yang HS, Wolcott MP, Kim HS, Kim HJ. Thermal properties of lignocellulosic filler-thermoplastic polymer bio-composites. J Therm Anal Calorim. 2005;82:157–60.

    Article  CAS  Google Scholar 

  21. Dai B, Wang Q, Yan W, Li Z, Guo W. Synergistic compatibilization and reinforcement of HDPE/wood flour composites. J Appl Polym Sci. 2016;133:42958.

    Google Scholar 

  22. Sudár A, Burgstaller C, Renner K, Móczó J, Pukánszky B. Wood fiber reinforced multicomponent, multiphase PP composites: structure, properties, failure mechanism. Compos Sci Technol. 2014;103:106–12.

    Article  Google Scholar 

  23. Sobczak L, Lang RW, Haider A. Polypropylene composites with natural fibers and wood—general mechanical property profiles. Compos Sci Technol. 2012;72:550–7.

    Article  CAS  Google Scholar 

  24. Gańán P, Mondragon I. Thermal and degradation behavior of fique fiber reinforced thermoplastic matrix composites. J Therm Anal Calorim. 2003;73:783–95.

    Article  Google Scholar 

  25. Zhang Z, Klein P, Friedrich K. Dynamic mechanical properties of PTFE based short carbon fibre reinforced composites: experiment and artificial neural network prediction. Compos Sci Technol. 2002;62:1001–9.

    Article  CAS  Google Scholar 

  26. American Society for Testing and Materials. ASTM D618-00. Standard practice for conditioning plastics for testing. Annual Book of ASTM Standards; 2000.

  27. Ratto JA, Stenhouse PJ, Auerbach M, Mitchell J, Farrell R. Processing, performance and biodegradability of a thermoplastic aliphatic polyester/starch system. Polymer. 1999;40:6777–88.

    Article  CAS  Google Scholar 

  28. Ashraf A. Thermal analysis of polymers by differential scanning calorimetry (DSC) technique. https://www.researchgate.net/publication/271841055_Thermal_Analysis_of_Polymers_LDPE_HDPE_by_Differential_Scanning_Calorimetry_Technique. 2014. doi:10.13140/2.1.1558.0963.

  29. Yang HS, Gardner DJ, Kim HJ. Viscoelastic and thermal analysis of lignocellulosic material filled polypropylene bio-composites. J Therm Anal Calorim. 2009;98:553–8.

    Article  CAS  Google Scholar 

  30. Joseph PV, Mathew G, Joseph K, Groeninckx G, Thomas S. Dynamic mechanical properties of short sisal fibre reinforced polypropylene composites. Compos Part A Appl Sci. 2003;34:275–90.

    Article  Google Scholar 

  31. Stankowski M, Kropidlowska A, Gazda M, Haponiuk JT. Properties of polyamide 6 and thermoplastic polyurethane blends containing modified montmorillonites. J Therm Anal Calorim. 2008;94:817–23.

    Article  CAS  Google Scholar 

  32. George J, Thomas S, Bhagawan SS. Effect of strain rate and temperature on the tensile failure of pineapple fiber reinforced polyethylene composites. J Thermoplast Compos. 1999;12:443–64.

    Article  CAS  Google Scholar 

  33. Prolongo MG, Salom C, Arribas C, Sánchez-Cabezudo M, Masegosa RM, Prolongo SG. Influence of graphene nanoplatelets on curing and mechanical properties of graphene/epoxy nanocomposites. J Therm Anal Calorim. 2016;125:629–36.

    Article  CAS  Google Scholar 

  34. Rana AK, Mitra BC, Banerjee AN. Short jute fiber-reinforced polypropylene composites: dynamic mechanical study. J Appl Polym Sci. 1999;71:531–9.

    Article  CAS  Google Scholar 

  35. Silva MJ, Soares VO, Dias GC, Santos RJ, Job AE, Sanches AO, Malmonge JA. Study of thermal and mechanical properties of a biocomposite based on natural rubber and 45S5 Bioglass® particles. J Therm Anal Calorim (online first). 2016;. doi:10.1007/s10973-016-5933-5.

    Google Scholar 

  36. Joseph PV, Joseph K, Thomas S. Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites. Compos Sci Technol. 1999;59:1625–40.

    Article  CAS  Google Scholar 

  37. Finegan IC, Tibbetts GG, Gibson RF. Modeling and characterization of damping in carbon nanofiber/polypropylene composites. Compos Sci Technol. 2003;63:1629–35.

    Article  CAS  Google Scholar 

  38. Kazayawoko M, Balatinecz JJ, Woodhams RT. Diffuse reflectance fourier transform infrared spectra of wood fibers treated with maleated polypropylenes. J Appl Polym Sci. 1997;66:1163–73.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Research Foundation Grant funded by the Korea Government (MOEHRD, Basic Research Promotion Fund) (M01-2004-000-20097-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Seung Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, HS. Thermal and dynamic mechanical thermal analysis of lignocellulosic material-filled polyethylene bio-composites. J Therm Anal Calorim 130, 1345–1355 (2017). https://doi.org/10.1007/s10973-017-6572-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6572-1

Keywords

Navigation