Skip to main content
Log in

Preparation of mesoporous silica-LDHs system and its coordinated flame-retardant effect on EVA

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This paper mainly studies synergistic flame-retardant effects and smoke suppression properties of mesoporous silica-LDHs system on the ethylene-vinyl acetate copolymer (EVA). The mesoporous silica-LDHs/EVA composites were prepared based on EVA as resin matrix, mesoporous silica-LDHs as flame-retardant composites. The flame-retardant and thermal degradation properties of the composites were characterized by limiting oxygen index (LOI), cone calorimeter test, scanning smoke density test (SDT), electronic microscopy (SEM) and thermogravimetry–Fourier transform infrared spectrometry (TG-IR) analysis. Remarkably, addition of certain amount of mesoporous silica-LDHs could evidently increase LOI values. The heat release rate and the total heat release of the composites were much lower than of pure EVA. The SDT results showed that the composites containing mesoporous silica-LDHs produced less smoke than pure EVA for a period of time. The morphologies and structures of the residues, revealed by SEM, ascertained that the formed char layers on the composites were denser than that of the LDHs/EVA composites. Mesoporous silica in the material can help smoke suppression. TG-IR data reveal that the incorporation of mesoporous silica-LDHs promoted the release of H2O, and CO2, meanwhile reduced harmful gases release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Setyawan H, Yuwana M, Balgis R. PEG-templated mesoporous silicas using silicate precursor and their applications in desiccant dehumidification cooling systems. Microporous Mesoporous Mat. 2015;218:95–100.

    Article  CAS  Google Scholar 

  2. Hao N, Tang F, Li L. MCM-41 mesoporous silica sheet with ordered perpendicular nanochannels for protein delivery and the assembly of Ag nanoparticles in catalytic applications. Microporous Mesoporous Mat. 2015;218:223–7.

    Article  CAS  Google Scholar 

  3. Huang W, Yu X, Tang J, Zhu Y, Zhang Y, Li D. Enhanced adsorption of phosphate by flower-like mesoporous silica spheres loaded with lanthanum. Microporous Mesoporous Mat. 2015;217:225–32.

    Article  CAS  Google Scholar 

  4. Wang H, Zhang SF, Liu JW, Ouyang LZ, Zhu M. Enhanced dehydrogenation of nanoscale MgH2 confined by ordered mesoporous silica. Mater Chem Phys. 2012;136(1):146–50.

    Article  CAS  Google Scholar 

  5. Park S, Bang J, Choi J. 3-Dimensionally disordered mesoporous silica (DMS)-containing mixed matrix membranes for CO2 and non-CO2 greenhouse gas separations. Sep Purif Technol. 2014;136:286–95.

    Article  CAS  Google Scholar 

  6. Marcoux L, Florek J, Kleitz F. Critical assessment of the base catalysis properties of amino-functionalized mesoporous polymer-SBA-15 nanocomposites. Appl Catal A Gen. 2015;504:493–503.

    Article  CAS  Google Scholar 

  7. Brunella V, Jadhav SA, Miletto I, Berlier G, Ugazio E, Sapino S. Hybrid drug carriers with temperature-controlled on–off release: a simple and reliable synthesis of PNIPAM-functionalized mesoporous silica nanoparticles. React Funct Polym. 2016;98:31–7.

    Article  CAS  Google Scholar 

  8. Edenharter A, Breu J. Applying the flame retardant LDH as a Trojan horse for molecular flame retardants. Appl Clay Sci. 2015;114:603–8.

    Article  CAS  Google Scholar 

  9. Li C, Wei M, Evans DG, Duan X. Recent advances for layered double hydroxides (LDHs) materials as catalysts applied in green aqueous media. Catal Today. 2015;247:163–9.

    Article  CAS  Google Scholar 

  10. Gao Y, Wang Q, Wang J, Huang L, Yan X, Zhang X. Synthesis of highly efficient flame retardant high-density polyethylene nanocomposites with inorgano-layered double hydroxides as nanofiller using solvent mixing method. ACS Appl Mater Interface. 2014;6(7):5094–104.

    Article  CAS  Google Scholar 

  11. Chen Y, Zou H, Liang M, Cao Y. Melting and crystallization behavior of partially miscible high density polyethylene/ethylene vinyl acetate copolymer (HDPE/EVA) blends. Thermochim Acta. 2014;586:1–8.

    Article  CAS  Google Scholar 

  12. Sonia A, Dasan KP. Celluloses microfibers (CMF)/poly (ethylene-co-vinyl acetate)(EVA) composites for food packaging applications: a study based on barrier and biodegradation behavior. J Food Eng. 2013;118(1):78–89.

    Article  CAS  Google Scholar 

  13. Rahman IA, Padavettan V. Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review. J Nanomater. 2012;11:8–22.

    Google Scholar 

  14. Ma J, Ding J, Li L, Zou J, Kong Y, Komarneni S. In situ reduction for synthesis of nano-sized Cu2O particles on MgCuAl-LDH layers for degradation of orange II under visible light. Ceram Int. 2015;41(2):3191–6.

    Article  CAS  Google Scholar 

  15. Prasanna SV, Kamath PV. Synthesis and characterization of arsenate-intercalated layered double hydroxides (LDHs): prospects for arsenic mineralization. J Colloid Interface Sci. 2009;331(2):439–45.

    Article  CAS  Google Scholar 

  16. Tseng CH, Hsueh HB, Chen CY. Effect of reactive layered double hydroxides on the thermal and mechanical properties of LDHs/epoxy nanocomposites. Compos Sci Technol. 2007;67(11):2350–62.

    Article  CAS  Google Scholar 

  17. Li L, Qian Y, Jiao CM. Synergistic flame retardant effect of melamine in ethylene–vinyl acetate/layered double hydroxides composites. J Therm Anal Calorim. 2013;114(1):45–55.

    Article  Google Scholar 

  18. Liu J, Zhang Y, Peng S, Pan B, Lu C, Liu H. Fire property and charring behavior of high impact polystyrene containing expandable graphite and microencapsulated red phosphorus. Polym Degrad Stab. 2015;121:261–70.

    Article  CAS  Google Scholar 

  19. Yi J, Yin H, Cai X. Effects of common synergistic agents on intumescent flame retardant polypropylene with a novel charring agent. J Therm Anal Calorim. 2013;111(1):725–34.

    Article  CAS  Google Scholar 

  20. Wang J, Qian L, Xu B, Xi W, Liu X. Synthesis and characterization of aluminum poly-hexamethylenephosphinate and its flame-retardant application in epoxy resin. Polym Degrad Stab. 2015;122:8–17.

    Article  CAS  Google Scholar 

  21. Jia CX, Chen XL, Qian Y. Synergistic flame retardant effect of graphite powder in EVA/LDH composites. Plast Rubber Compos. 2014;43(2):46–53.

    Article  CAS  Google Scholar 

  22. Xu MJ, Xu GR, Leng Y, Li B. Synthesis of a novel flame retardant based on cyclotriphosphazene and DOPO groups and its application in epoxy resins. Polym Degrad Stab. 2016;123:105–14.

    Article  CAS  Google Scholar 

  23. Qian Y, Wei P, Jiang P, Li Z, Yan Y, Ji K. Aluminated mesoporous silica as novel high-effective flame retardant in polylactide. Compos Sci Technol. 2013;82:1–7.

    Article  CAS  Google Scholar 

  24. Liu L, Hu J, Zhuo J, Jiao C, Chen X, Li S. Synergistic flame retardant effects between hollow glass microspheres and magnesium hydroxide in ethylene-vinyl acetate composites. Polym Degrad Stab. 2014;104:87–94.

    Article  CAS  Google Scholar 

  25. Chen X, Jiang Y, Jiao C. Smoke suppression properties of ferrite yellow on flame retardant thermoplastic polyurethane based on ammonium polyphosphate. J Hazard Mater. 2014;266:114–21.

    Article  CAS  Google Scholar 

  26. Hu W, Yu B, Jiang SD, Song L, Hu Y. Hyper-branched polymer grafting graphene oxide as an effective flame retardant and smoke suppressant for polystyrene. J Hazard Mater. 2015;300:58–66.

    Article  CAS  Google Scholar 

  27. Li L, Qian Y, Jiao CM. Influence of red phosphorus on the flame-retardant properties of ethylene vinyl acetate/layered double hydroxides composites. Iran Polym J. 2012;21(9):557–68.

    Article  CAS  Google Scholar 

  28. Hirose S, Kobashigawa K, Izuta Y, Hatakeyama H. Thermal degradation of polyurethanes containing lignin studied by TG-FTIR. Polym Int. 1998;47(3):247–56.

    Article  CAS  Google Scholar 

  29. Salgado J, Paz-Andrade MI. The effect of firesorb as a fire retardant on the thermal properties of a heated soil. J Therm Anal Calorim. 2009;95(3):837–42.

    Article  CAS  Google Scholar 

  30. Zhao CX, Liu Y, Wang DY, Wang YZ. Synergistic effect of ammonium polyphosphate and layered double hydroxide on flame retardant properties of poly(vinyl alcohol). Polym Degrad Stab. 2008;93(7):1323–31.

    Article  CAS  Google Scholar 

  31. Zanetti M, Kashiwagi T, Falqui L, Camino G. Cone calorimeter combustion and gasification studies of polymer layered silicate nanocomposites. Chem Mater. 2002;14(2):881–7.

    Article  CAS  Google Scholar 

  32. Weil ED, Patel NG. Iron compounds in non-halogen flame-retardant polyamide systems. Polym Degrad Stab. 2003;82(2):291–6.

    Article  CAS  Google Scholar 

  33. Gregoriou VG, Kandilioti G, Bollas ST. Chain conformational transformations in syndiotactic polypropylene/layered silicate nanocomposites during mechanical elongation and thermal treatment. Polymer. 2005;46(25):11340–50.

    Article  CAS  Google Scholar 

  34. Chen YJ, Zhan J, Zhang P, Nie SB, Lu HD, Song L, Hu Y. Preparation of intumescent flame retardant poly(butylene succinate) using fumed silica as synergistic agent. Ind Eng Chem Res. 2010;49(17):8200–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (Grant No. 51372129), the National Natural Science Foundation of China (Grant No. 51572138) and the Projects of Science and Technology from Shandong Province (Grant No. 2013GSF11608).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Y., Li, S. & Chen, X. Preparation of mesoporous silica-LDHs system and its coordinated flame-retardant effect on EVA. J Therm Anal Calorim 130, 2055–2067 (2017). https://doi.org/10.1007/s10973-017-6508-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6508-9

Keywords

Navigation