Skip to main content
Log in

The effect of firesorb as a fire retardant on the thermal properties of a heated soil

  • The Kyoto Protocol and The Calorimetric Methods
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The DSC technique was used to characterise under laboratory conditions, the effect of a polymer substance, Firesorb, that tries to be used as a flame retardant in forest fires, over two different Galician soils (NW Spain). Samples of these soils with different doses of this retardant were heated in an oven at 230 and 350°C to simulate medium and high intensity fires, respectively. The effect of the retardant was determined as a result of the comparison between the enthalpy of combustion of the organic matter and the ignition temperature of these subsamples and the corresponding unheated and untreated ones. Both parameters, enthalpy of combustion and ignition temperature, were determined directly from the DSC experiments. The results showed that the effect of the retardant remains clear in heating at 230°C and the content of organic matter of the soil was a determining factor in its quantification. However the effect of the retardant in heating at high temperatures is almost null in both soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Chandler, P. Cheney, L. Thomas, L. Trabaud and D. Willians, Fire in Forestry, Forest Fires Behaviour and Effects, Wiley and Sons, New York 1983.

    Google Scholar 

  2. T. Bell, K. Tolhurst and M. Wouters, Int. J. Wildland Fire, 14 (2005) 199.

    Article  CAS  Google Scholar 

  3. A. Couto-Vazquez and S. J. Gonzalez-Prieto, Sci. Total Environ., 371 (2006) 353.

    Article  CAS  Google Scholar 

  4. K. Hartskeerl, D. Simmons and R. Adams, Int. J. Wildland Fire, 13 (2004) 335.

    Article  Google Scholar 

  5. B. Luna, J. M. Moreno, A. Cruz and F. Fernandez-Gonzalez, Int. J. Wildland Fire, 16 (2007) 349.

    Article  CAS  Google Scholar 

  6. M. R. Basanta, M. Diaz-Ravina, S. J. Gonzalez-Prieto and T. Carballas, Biol. Fertility Soils, 36 (2002) 377.

    Article  CAS  Google Scholar 

  7. J. W. Dodd and K. Tongue, Thermal Methods, Wiley-Interscience, London 1987.

    Google Scholar 

  8. N. Barros, J. Salgado and S. Feijoo, Thermochim. Acta, 458 (2007) 11.

    Article  CAS  Google Scholar 

  9. M. V. Kök, J. Therm. Anal. Cal., 64 (2001) 1319.

    Article  Google Scholar 

  10. J. M. P. García, H. F. Mothé Filho and V. Zuquete, J. Therm. Anal. Cal., 93 (2008) 253

    Article  Google Scholar 

  11. I. Fernandez, A. Cabaneiro and T. Carballas, Geoderma, 104 (2001) 281.

    Article  CAS  Google Scholar 

  12. J. Salgado, M. M. Mato, A. Vazquez-Galiñanes, M. I. Paz Andrade and T. Carballas, Thermochim. Acta, 410 (2004) 141.

    Article  CAS  Google Scholar 

  13. J. Salgado, M. I. Gonzalez, J. Armada, M. I. Paz Andrade, M. Carballas and T. Carballas, Thermochim. Acta, 259 (1995) 165.

    Article  CAS  Google Scholar 

  14. M. R. Basanta, M, Diaz-Ravina and T. Carballas, Agrochimica, 47 (2003) 9.

    CAS  Google Scholar 

  15. T. Satoh, Soil Sci. Plant Nutr., 30 (1984) 1.

    Google Scholar 

  16. T. Satoh, Soil Sci. Plant Nutr., 30 (1984) 95.

    Google Scholar 

  17. P. Leinweber and H. R. Schulten, Thermochim. Acta, 200 (1992) 151.

    Article  CAS  Google Scholar 

  18. D. Montecchio, O. Francioso, P. Carletti, D. Pizzaghello, S. Chersich, F. Previtali and S. Nardi, J. Therm. Anal. Cal., 83 (2006) 393.

    Article  CAS  Google Scholar 

  19. I. Fernández, A. Cabaneiro and T. Carballas, Soil Biol. Biochem., 29 (1997) 1.

    Article  Google Scholar 

  20. D. Badia and C. Marti, Arid Land Res. Manage., 17 (2003) 23.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Salgado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salgado, J., Paz-Andrade, M.I. The effect of firesorb as a fire retardant on the thermal properties of a heated soil. J Therm Anal Calorim 95, 837–842 (2009). https://doi.org/10.1007/s10973-008-9420-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-008-9420-5

Keywords

Navigation