Skip to main content
Log in

A kinetic investigation of thermal decomposition of 1,1′-dihydroxy-5,5′-bitetrazole-based metal salts

The potential energetic combustion catalyst for propellant

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Three novel Co/Cu/Pb salts of 1,1′-dihydroxy-5,5′-bitetrazole (BTO) were prepared, and their thermal behaviors, decomposition reaction kinetics, thermal safety and thermodynamic parameters were investigated as potential energetic combustion catalysts for propellant. Thermogravimetric analysis and differential scanning calorimetry had been used to identify the changes in thermal and kinetic behavior of samples. The results outlined three mass loss stages in TG curves, and the major effect of the metal was observed at second stage for decomposition of organic groups. Thermal-kinetic evaluations were carried out by a model-free and a model fitting method. The model-free method indicated that the activation energy follows the order of BTO-Pb > BTO-Cu > BTO-Co. The model fitting analysis of this stage suggested: (1) the thermal decomposition of BTO-Co was an one-dimensional bounding process, and R1, n = 1. The integral form of the reaction mechanism was F(α) = α. (2) The thermal decomposition of BTO-Cu kept to the mechanism of nucleation and growth, respectively, in which n = 4/3. The integral form of the reaction mechanism was F(α) = [−ln(1 − α)]3/4. (3) The thermal decomposition of BTO-Pb was one-dimensional diffusion referring to the 1D, D 1 decelerating reaction mechanism. The integral form of the reaction mechanism was F(α) = α 2. The thermal safety evaluation and thermodynamic parameters were finally studied. The high value of both self-accelerating decomposition temperature (T SADT) (520–550 K) and enthalpy of activation (ΔH ) (200 kJ mol−1) for the three indicated that they were all of good thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kubota N. Propellants and explosives. Weinheim: Wiley; 2002.

    Google Scholar 

  2. Rastogi RP, Singh G, Singh RR. Burning rate catalysts for composite solid propellants. Combust Flame. 1977;30:311–4.

    Article  Google Scholar 

  3. Chakravarthy SR, Freeman JM, Price EW, Sigman RK. Combustion of propellants with ammonium dinitramide. Propell Explos Pyrot. 2004;29:220–30.

    Article  CAS  Google Scholar 

  4. Zhang GT, Zhou ZN, Zhang TL, Yang L, Zhang JG, Zhao FQ, Yi JH, Xu SY, Gao HX. Advances on energetic catalysts for solid propellant. J Solid Rocket Tech. 2011;34:319–23.

    CAS  Google Scholar 

  5. Ishitha K, Ramakrishna PA. Studies on the role of iron oxide and copper chromite in solid propellant combustion. Combust Flame. 2014;161:2717–28.

    Article  CAS  Google Scholar 

  6. Vargeese AA. A kinetic investigation on the mechanism and activity of copper oxide nanorods on the thermal decomposition of propellants. Combust Flame. 2016;165:354–60.

    Article  CAS  Google Scholar 

  7. Zhu YL, Huang H, Ren H, Jiao QJ. Kinetics of thermal decomposition of ammonium perchlorate by TG/DSC-MS-FTIR. J Energ Mater. 2014;32:16–26.

    Article  CAS  Google Scholar 

  8. Zain-UI A, Wang L, Yu HJ, Saleem M, Akram M, Abbasi NM, Khalid H, Sun RL, Chen YS. Ferrocene-based polyethyleneimines for burning rate catalysts. New J Chem. 2016;40:3155–63.

    Article  Google Scholar 

  9. Kohga M, Okamoto K. Thermal decomposition behaviors and burning characteristics of ammonium nitrate/polytetrahydrofuran/glycerin composite propellant. Combust Flame. 2011;158:573–82.

    Article  CAS  Google Scholar 

  10. Huynh MHV, Hiskey MA, Meyer TJ, Wetzler M. Green primaries: environmentally friendly energetic complexes. PNAS. 2006;103:5409–12.

    Article  CAS  Google Scholar 

  11. Palaiah RS, Bulakh NR, Talawar MB, Mukundan T. Studies on metal salts of 4-(2,4,6-trinitroanilino) benzoic acid. J Energ Mater. 2000;18:207–17.

    Article  CAS  Google Scholar 

  12. Kulkarni PB, Reddy TS, Nair JK, Nazare AN, Talawar MB, Mukundan T, Asthana SN. Studies on salts of 3-nitro-1,2,4-triazol-5-one (NTO) and 2,4,6-trinitroanilino benzoic acid (TABA): potential energetic ballistic modifiers. J Hazard Mater. 2005;123:54–60.

    Article  CAS  Google Scholar 

  13. Singh G, Felix SP. Studies of energetic compounds, part 29: effect of NTO and its salts on the combustion and condensed phase thermolysis of composite solid propellants, HTPB-AP. Combust Flame. 2003;132:422–32.

    Article  CAS  Google Scholar 

  14. Frija LMT, Alegria ECBA, Sutradhar M, Cristiano MLS, Ismael A, Kopylovich MN, Pombeiro AJL. Copper(II) and cobalt(II) tetrazole-saccharinate complexes as effective catalysts for oxidation of secondary alcohols. J Mol Catal A Chem. 2016;425:283–90.

    Article  CAS  Google Scholar 

  15. Chen LY, Zhang JG, Zhou ZN, Zhang TL. A biography of potassium complexes as versatile, green energetic materials. RSC Adv. 2016;6:98381–405.

    Article  CAS  Google Scholar 

  16. Fischer N, Fischer D, Klapoetke TM, Piercey DG, Stierstorfer J. Pushing the limits of energetic materials—the synthesis and characterization of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate. J Mater Chem. 2012;22:20418–22.

    Article  CAS  Google Scholar 

  17. Ma S, Li YJ, Li Y, Luo YJ. Research on structures, mechanical properties, and mechanical responses of TKX-50 and TKX-50 based PBX with molecular dynamics. J Mol Mod. 2016;22:43–50.

    Article  CAS  Google Scholar 

  18. Dippold AA, Klapötke TM. A study of dinitro-bis-1,2,4-triazole-1,1′-diol and derivatives: design of high-performance insensitive energetic materials by the introduction of N-oxides. J Am Chem Soc. 2013;135:9931–8.

    Article  CAS  Google Scholar 

  19. Sinditskii VP, Filatov SA, Kolesov VI, Kapranov KO, Asachenkob AF, Nechaevb MS, Luninb VV, Shishov NI. Combustion behavior and physico-chemical properties of dihydroxylammonium 5, 5′-bistetrazole-1, 1′-diolate (TKX-50). Thermochim Acta. 2015;614:85–92.

    Article  CAS  Google Scholar 

  20. Huang H, Shi Y, Yang J. Thermal characterization of the promising energetic material TKX-50. J Therm Anal Calorim. 2015;121:705–9.

    Article  CAS  Google Scholar 

  21. Yan QL, Zeman S, Zhang JG, He P, Musila T, Bartoskova M. Multi-stage decomposition of 5-aminotetrazole derivatives: kinetics and reaction channels for the rate-limiting steps. Phys Chem Chem Phys. 2014;16:24282–91.

    Article  CAS  Google Scholar 

  22. Zhang D, Lu S, Gong LL, Cao CY, Zhang HP. Effects of calcium carbonate on thermal characteristics, reaction kinetics and combustion behaviors of 5AT/Sr(NO3)(2) propellant. Energ Convers Manage. 2016;109:94–102.

    Article  CAS  Google Scholar 

  23. Trache D, Abdelaziz A, Siouani B. A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions. J Therm Anal Calorim. 2016. doi:10.1007/s10973-016-5962-0.

    Google Scholar 

  24. Trache D. Comments on “thermal degradation behavior of hypochlorite-oxidized starch nanocrystals under different oxidized levels”. Carbohyd Polym. 2016;151:535–7.

    Article  CAS  Google Scholar 

  25. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  26. Trache D, Khimeche K, Mezroua A, Benziane M. Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. J Therm Anal Calorim. 2016;124:1485–96.

    Article  CAS  Google Scholar 

  27. Trache D, Khimeche K. Study on the influence of ageing on thermal decomposition of double-base propellants and prediction of their in-use time. Fire Mater. 2013;37:328–36.

    Article  CAS  Google Scholar 

  28. Koga N. Ozawa’s kinetic method for analyzing thermoanalytical curves. J Therm Anal Calorim. 2013;113:1527–41.

    Article  CAS  Google Scholar 

  29. Ozawa T. A new method of quantitative differential thermal analysis. Bull Chem Soc Jpn. 1966;39:2071–85.

    Article  CAS  Google Scholar 

  30. Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Poly Sci. 1962;6:639–42.

    Article  CAS  Google Scholar 

  31. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  32. Hu RZ, Gao SL, Zhao FQ. Thermal analysis kinetics. 2nd ed. Beijing: Science Press; 2008.

    Google Scholar 

  33. Ma HX, Song JR, Zhao FQ, Hu RZ, Xiao HM. Nonisothermal reaction kinetics and computational studies on the properties of 2,4,6,8-tetranitro-2,4,6,8-tetraazabicyclo [3,3,1] onan-3,7-dione (TNPDU). J Phys Chem A. 2007;111:8642–9.

    Article  CAS  Google Scholar 

  34. Zhang TL, Hu RZ, Xie Y, Li FP. The estimation of the critical temperature of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 1994;244:171–6.

    Article  CAS  Google Scholar 

  35. Zhao FQ, Gao HX, Luo Y, Hu RZ, Pei C, Gao SL, Yang XW, Shi QZ. Constant volume combustion energy of the lead salts of 2HDNPPb and 4HDNPPb and their effect on combustion characteristics of RDX-CMDB propellant. J Therm Anal Cal. 2006;85:791–4.

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the National Natural Science Foundation of China (NSFC, Grant Nos. 51374131 and U1530101) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng-cheng Wang or Qiu-han Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Pc., Xie, Q., Xu, Yg. et al. A kinetic investigation of thermal decomposition of 1,1′-dihydroxy-5,5′-bitetrazole-based metal salts. J Therm Anal Calorim 130, 1213–1220 (2017). https://doi.org/10.1007/s10973-017-6485-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6485-z

Keywords

Navigation