Skip to main content
Log in

Effect of potassium organic and inorganic salts on thermal decomposition of reconstituted tobacco sheet

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In order to deeply investigate the role of potassium in modifying thermal behavior and burning characteristics of reconstituted tobacco sheet (RTS), electrodialysis (ED) technology was employed at first to remove the main ions in the tobacco extract to reduce interference of endogenous ions. Characterization on thermal behavior of RTS treated with three organic (acetate, malate and citrate) potassium salts and three inorganic (chloride, sulfate and phosphate) potassium salts was then performed using thermogravimetric analyzer coupled with Fourier transforms infrared spectrometer (TG-FTIR) at the heating rate of 20 °C min−1. TG results illustrated that potassium decreased the peak temperature of carbohydrate pyrolysis, retarded the thermal degradation of the major components of RTS and meanwhile promoted the formation of stable char firmly depending on its chemical state. The organic potassium salts had a more significant effect on the process of char oxidation than inorganic ones with a new peak at around 570 °C. Analyses of evolved gaseous products distribution demonstrated a significant reduction of CO and CO2 during carbohydrates pyrolysis in the presence of potassium, especially organic potassium salts. Moreover, the maximum firecone temperature was also measured by Infrared thermography, and it had been found that the burning cone temperature of ED-modified RTS was averagely 13.27 °C higher than that of organic potassium treated RTS but averagely 16.57 °C lower than that of inorganic ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang L, Wen YB, Sun DP, Mao Y, Yao YJ. Study on the decrease of harmful substance in paper-process reconstituted tobacco sheet. Adv Mater Res-Switz. 2011;314–316:2338–43. doi:10.4028/www.scientific.net/AMR.314-316.2338.

    Google Scholar 

  2. Gao WH, Chen KF, Yang RD, Yang F. Rheological property of reconstituted tobacco coatings. Ind Crop Prod. 2014;60:45–51. doi:10.1016/j.indcrop.2014.06.002.

    Article  CAS  Google Scholar 

  3. Zhong WH, Zhu CJ, Shu M, Sun KD, Zhao L, Wang C, et al. Degradation of nicotine in tobacco waste extract by newly isolated Pseudomonas sp ZUTSKD. Bioresour Technol. 2010;101(18):6935–41. doi:10.1016/j.biortech.2010.03.142.

    Article  CAS  Google Scholar 

  4. Gao WH, Chen KF, Yang RD, Yang F. Process for coating of reconstituted tobacco sheet with citrates. J Anal Appl Pyrolysis. 2015;114:138–42. doi:10.1016/j.jaap.2015.05.013.

    Article  CAS  Google Scholar 

  5. Wu XX, Xu CH, Li M, Sun SQ, Li JM, Dong W. Analysis and identification of two reconstituted tobacco sheets by three-level infrared spectroscopy. J Mol Struct. 2014;1069:133–9. doi:10.1016/j.molstruc.2013.12.057.

    Article  CAS  Google Scholar 

  6. Yin CY, Xu ZQ, Shu JS, Wang H, Li Y, Sun WF, et al. Study on the effect of potassium lactate additive on the combustion behavior and mainstream smoke of cigarettes. J Therm Anal Calorim. 2014;115(2):1733–51. doi:10.1007/s10973-013-3478-4.

    Article  CAS  Google Scholar 

  7. Ge SL, Xu YB, Tian ZF, Zhou S, She SK, Hu YH, et al. Effect of urea phosphate on thermal decomposition of reconstituted tobacco and CO evolution. J Anal Appl Pyrolysis. 2013;99:178–83. doi:10.1016/j.jaap.2012.09.013.

    Article  CAS  Google Scholar 

  8. Saddawi A, Jones JM, Williams A. Influence of alkali metals on the kinetics of the thermal decomposition of biomass. Fuel Process Technol. 2012;104:189–97. doi:10.1016/j.fuproc.2012.05.014.

    Article  CAS  Google Scholar 

  9. Eom IY, Kim JY, Kim TS, Lee SM, Choi D, Choi IG, et al. Effect of essential inorganic metals on primary thermal degradation of lignocellulosic biomass. Bioresour Technol. 2012;104:687–94. doi:10.1016/j.biortech.2011.10.035.

    Article  CAS  Google Scholar 

  10. Baskevitch N, Horler JW. Organic potassium. Its role in controlling the rate of burn and tar content of tobacco products. http://legacy.library.ucsf.edu/tid/uay11c00/pdf.

  11. Yamamoto T, Umemura S, Kaneko H. Effect of exogenous potassium on the reduction in tar, nicotine and carbon-monoxide deliveries in the mainstream smoke of cigarettes. Beitr Tabakforsch. 1990;14(6):379–85.

    CAS  Google Scholar 

  12. Liu C, Parry A. Potassium organic salts as burn additives in cigarettes. Beitr Tabakforsch/Contrib Tob Res. 2014;20:341–7.

    CAS  Google Scholar 

  13. Izawa K, Matsukura M, Ishizu Y. Curie-point pyrolysis of cellulose in the presence of potassium malate. Agrc Biol Chem Tokyo. 1990;54(4):957–63.

    CAS  Google Scholar 

  14. Yang CY, Lu XS, Lin WG, Yang XM, Yao JZ. TG-FTIR study on corn straw pyrolysis-influence of minerals. Chem Res Chin Uiniv. 2006;22(4):524–32. doi:10.1016/S1005-9040(06)60155-4.

    Article  CAS  Google Scholar 

  15. Zhao DQ, Dai Y, Chen KF, Sun YF, Yang F, Chen KY. Effect of potassium inorganic and organic salts on the pyrolysis kinetics of cigarette paper. J Anal Appl Pyrolysis. 2013;102:114–23. doi:10.1016/j.jaap.2013.03.007.

    Article  CAS  Google Scholar 

  16. Prowse RL. Reconstituted (‘Sheet’) Tobaccos: a review of processes, product properties and future potential. http://www.legacy.library.ucsf.edu/tid/fpy74a99/pdf.

  17. Gellatly G. Process for utilizing tobacco fines in making reconstituted tobacco. Google Patents 1983.

  18. Kumar A, Gomes J. Method and apparatus for producing reconstituted tobacco sheets. Google Patents 2001.

  19. Zhang ZH, Ge SL, Jiang CX, Zhao Y, Wang YM. Improving the smoking quality of papermaking tobacco sheet extract by using electrodialysis. Membr Water Treat. 2014;5(1):31–40.

    Article  Google Scholar 

  20. Chen MS, Xu ZQ, Chen G, Wang H, Yin CY, Zhou ZL, et al. The influence of exogenous fiber on the generation of carbonyl compounds in reconstituted tobacco sheet. J Anal Appl Pyrolysis. 2014;105:227–33. doi:10.1016/j.jaap.2013.11.008.

    Article  CAS  Google Scholar 

  21. Marcilla A, Beltran MI, Gomez-Siurana A, Martinez-Castellanos I, Berenguer D, Pastor V, et al. TGA/FTIR study of the pyrolysis of diammonium hydrogen phosphate-tobacco mixtures. J Anal Appl Pyrolysis. 2015;112:48–55. doi:10.1016/j.jaap.2015.02.023.

    Article  CAS  Google Scholar 

  22. Jensen A, Dam-Johansen K, Wojtowicz MA, Serio MA. TG-FTIR study of the influence of potassium chloride on wheat straw pyrolysis. Energy Fuel. 1998;12(5):929–38. doi:10.1021/Ef980008i.

    Article  CAS  Google Scholar 

  23. Wang HQ, Yang XF, Guo LH, Zeng HM, Qiu DW. PeBL1, a novel protein elicitor from Brevibacillus laterosporus strain A60, activates defense responses and systemic resistance in Nicotiana benthamiana. Appl Environ Microbiol. 2015;81(8):2706–16. doi:10.1128/Aem.03586-14.

    Article  CAS  Google Scholar 

  24. Zhou S, Ning M, Xu YB, Hu Y, Shu JS, Wang CH, et al. Thermal degradation and combustion behavior of reconstituted tobacco sheet treated with ammonium polyphosphate. J Anal Appl Pyrolsis. 2013;100:223–9. doi:10.1016/j.jaap.2012.12.027.

    Article  CAS  Google Scholar 

  25. Di Blasi C, Branca C, D’Errico G. Degradation characteristics of straw and washed straw. Thermochim Acta. 2000;364(1–2):133–42.

    Article  CAS  Google Scholar 

  26. Muller-Hagedorn M, Bockhorn H, Krebs L, Muller U. A comparative kinetic study on the pyrolysis of three different wood species. J Anal Appl Pyrolysis. 2003;68–9:231–49. doi:10.1016/S0165-2370(03)00065-2.

    Article  Google Scholar 

  27. Nowakowski DJ, Jones JM. Uncatalysed and potassium-catalysed pyrolysis of the cell-wall constituents of biomass and their model compounds. J Anal Appl Pyrolysis. 2008;83(1):12–25. doi:10.1016/j.jaap.2008.05.007.

    Article  CAS  Google Scholar 

  28. Eom IY, Kim KH, Kim JY, Lee SM, Yeo HM, Choi IG, et al. Characterization of primary thermal degradation features of lignocellulosic biomass after removal of inorganic metals by diverse solvents. Bioresour Technol. 2011;102(3):3437–44. doi:10.1016/j.biortech.2010.10.056.

    Article  CAS  Google Scholar 

  29. Wang WS, Wang Y, Yang LJ, Liu BZ, Lan MB, Sun WL. Studies on thermal behavior of reconstituted tobacco sheet. Thermochim Acta. 2005;437(1–2):7–11. doi:10.1016/j.tca.2005.06.002.

    Article  CAS  Google Scholar 

  30. Sung YJ, Seo YB. Thermogravimetric study on stem biomass of Nicotiana tabacum. Thermochim Acta. 2009;486(1–2):1–4. doi:10.1016/j.tca.2008.12.010.

    Article  CAS  Google Scholar 

  31. Fenner RA, Lyonshart J, Lephardt JO, Teng DM. Application of Fourier-transform infrared evolved gas-analysis (Ft-Ir-Ega) to the study of tobacco curing. Beitr Tabakforsch. 1988;14(2):85–91.

    CAS  Google Scholar 

  32. Liu Q, Wang SR, Luo ZY, Cen KF. Catalysis mechanism study of potassium salts on cellulose pyrolysis by using TGA-FTIR analysis. J Chem Eng Jpn. 2008;41(12):1133–42.

    Article  CAS  Google Scholar 

  33. Crowther AC, Carrier SL, Preston TJ, Crim FF. Time-resolved studies of CN radical reactions and the role of complexes in solution. J Phys Chem A. 2008;112(47):12081–9. doi:10.1021/jp8064079.

    Article  CAS  Google Scholar 

  34. Olsson JG, Jaglid U, Pettersson JBC, Hald P. Alkali metal emission during pyrolysis of biomass. Energy Fuel. 1997;11(4):779–84. doi:10.1021/Ef960096b.

    Article  CAS  Google Scholar 

  35. Wornat MJ, Sakurovs R. Proton magnetic resonance thermal analysis of a brown coal: effects of ion-exchanged metals. Fuel. 1996;75(7):867–71. doi:10.1016/0016-2361(96)00016-6.

    Article  CAS  Google Scholar 

  36. Quyn DM, Wu HW, Li CZ. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part I. Volatilisation of Na and Cl from a set of NaCl-loaded samples. Fuel. 2002;81(2):143–9. doi:10.1016/S0016-2361(01)00127-2.

    Article  CAS  Google Scholar 

  37. Wu HW, Quyn DM, Li CZ. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part III. The importance of the interactions between volatiles and char at high temperature. Fuel. 2002;81(8):1033–9. doi:10.1016/S0016-2361(02)00011-X.

    Article  CAS  Google Scholar 

  38. Colthup NB, Daly LH, Wiberley SE. Introduction to infrared and Raman spectroscopy. 3rd ed. Boston: Academic Press; 1990.

    Google Scholar 

  39. Buryan P, Staff M. Pyrolysis of the waste biomass. J Therm Anal Calorim. 2008;93(2):637–40. doi:10.1007/s10973-007-8700-9.

    Article  CAS  Google Scholar 

  40. Li J, Liu YW, Shi JY, Wang ZY, Hu L, Yang X, et al. The investigation of thermal decomposition pathways of phenylalanine and tyrosine by TG-FTIR. Thermochim Acta. 2008;467(1–2):20–9. doi:10.1016/j.tca.2007.10.014.

    CAS  Google Scholar 

  41. http://www.originlab.com/index.aspx?go=Products/Origin/DataAnalysis/PeakAnalysis.

Download references

Acknowledgements

The financial supports from China Tobacco Anhui Industrial Corporation (No. 2014104 and 2014109) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaolin Ge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, M., Wei, B., Zhang, Z. et al. Effect of potassium organic and inorganic salts on thermal decomposition of reconstituted tobacco sheet. J Therm Anal Calorim 129, 975–984 (2017). https://doi.org/10.1007/s10973-017-6214-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6214-7

Keywords

Navigation