Skip to main content
Log in

Effect of exogenous softwood on thermal decomposition of reconstituted tobacco sheet

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In recent years, reconstituted tobacco sheet (RTS) has played an increasingly vital role in reducing tumorigenicity for tobacco industry. In this paper, two plant fibers of tobacco pulp (TP) and softwood pulp (SP) were added independently as strengthening agents during the paper-making process to manufacture RTS (TP-RTS and SP-RTS). The effects of exogenous SP on the CO yield in cigarette mainstream smoke, thermal behavior, and gaseous products evolution properties of RTS were evaluated and compared with TP. The CO yield in cigarette mainstream smoke was studied using smoking machine and CO analyzer. The thermal behavior of two RTS was studied by thermogravimetric (TG) analysis, and the gaseous products were investigated by Fourier transform infrared spectrometer (FTIR). CO yield in cigarette mainstream smoke results demonstrated that SP-RTS (3.16 mg per puff) presented higher CO yield per puff than TP-RTS (2.83 mg per puff). TG analysis results demonstrated that the maximum mass loss rate of SP-RTS (23.3 % min−1) was drastically higher than that of TP-RTS (15.8 % min−1). FTIR results illustrated that SP-RTS presented stronger absorbance intensity associated with generation of more gaseous products than TP-RTS. In the thermal decomposition stage, the maximum mass loss rate of SP (78.6 % min−1) was clearly higher than that of TP (38.4 % min−1), and SP increased the generation of gaseous products compared to TP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sun J, He J, Wu F, Tu S, Yan T, Si H, Xie H. Comparative analysis on chemical components and sensory quality of aging flue-cured tobacco from four main tobacco areas of China. Agric Sci China. 2011;10(8):1222–31.

    Article  CAS  Google Scholar 

  2. Han WJ, Zhao CS. The recent process of reconstituted tobacco by paper process. Heilongjiang Pap. 2007;35(4):47–9 (in Chinese).

    Google Scholar 

  3. Norman A. Cigarette design and materials. In: Davis DL, Nielsen MT, editors. Tobacco: production, chemistry and technology. Oxford: Blackwell Science Limited; 1999. p. 353–87.

    Google Scholar 

  4. Hoffmann D, Tso T, Gori GB. The less harmful cigarette. Prev Med. 1980;9(2):287–96.

    Article  CAS  Google Scholar 

  5. Potts RJ, Bombick BR, Meckley DR, Ayres PH, Pence DH. A summary of toxicological and chemical data relevant to the evaluation of cast sheet tobacco. Exp Toxicol Pathol. 2010;62(2):117–26.

    Article  CAS  Google Scholar 

  6. An R, Xie Y, Wang L, Wang F, Yao Y. Cigarette paper based on tobacco sheet: its preparation and properties. China Pulp Pap. 2012;31(1):45–8 (in Chinese).

    CAS  Google Scholar 

  7. Baker RR. The generation of formaldehyde in cigarettes—overview and recent experiments. Food Chem Toxicol. 2006;44(11):1799–822.

    Article  CAS  Google Scholar 

  8. Tarora W, Torikai K, Takahashi H. Studies on the generation of carbonyl compounds in tobacco smoke. In: Paper presented at 57th tobacco science research conference, Norfolk, VA, USA, September 2003. Program Booklet and Abstracts, number 57, p. 54.

  9. Blasi CD, Lanzetta M. Intrinsic kinetics of isothermal xylan degradation in inert atmosphere. J Anal Appl Pyrolysis. 1997;40:287–303.

    Article  Google Scholar 

  10. Clarke MB, Bezabeh DZ, Howard CT. Determination of carbohydrates in tobacco products by liquid chromatography–mass spectrometry/mass spectrometry: a comparison with ion chromatography and application to product discrimination. J Agric Food Chem. 2006;54(6):1975–81.

    Article  CAS  Google Scholar 

  11. Sun W, Zhou Z, Li Y, Xu Z, Xia W, Zhong F. Differentiation of flue-cured tobacco leaves in different positions based on neutral volatiles with principal component analysis (PCA). Anal Bioanal Chem. 2012;235(4):745–52.

    CAS  Google Scholar 

  12. Zhou S, Ning M, Xu Y, Hu Y, Shu J, Wang C. Thermal degradation and combustion behavior of reconstituted tobacco sheet treated with ammonium polyphosphate. J Anal Appl Pyrolysis. 2013;100:223–9.

    Article  CAS  Google Scholar 

  13. Fenner R. Thermoanalytical characterization of tobacco constituents. Recent Adv Tob Sci. 1988;14(42):82–113.

    Google Scholar 

  14. Zhou S, Xu Y, Wang C, Tian Z. Pyrolysis behavior of pectin under the conditions that simulate cigarette smoking. J Anal Appl Pyrolysis. 2011;91:232–40.

    Article  CAS  Google Scholar 

  15. ISO 4387: cigarettes-determination of total and nicotine free dry particulate matter using a routine analytical smoking machine; Reference number ISO 4378:1991 (E). Geneva: International organization for standardization; 1991.

  16. Calafat A, Polzin G, Saylor J, Richter P, Ashley D, Watson C. Determination of tar, nicotine, and carbon monoxide yields in the mainstream smoke of selected international cigarettes. Tob Control. 2004;13(1):45–51.

    Article  CAS  Google Scholar 

  17. Chen M, Xu Z, Chen G, Ge S, Yin C, Zhou Z, Sun W, Li L, Zhong F. The generation of carbon monoxide and carbonyl compounds in reconstituted tobacco sheet. J Therm Anal Calorim. 2013. doi:10.1007/s10973-013-3368-9.

    Google Scholar 

  18. Goldsmith JR, Terzaghi J, Hackney JD. Evaluation of fluctuating carbon monoxide exposures: theoretical approach and a preliminary test of methods for studying effects on human populations of fluctuating exposures from multiple sources. Arch Environ Health Int J. 1963;7(6):647–63.

    Article  CAS  Google Scholar 

  19. Ishizu Y, Kaneki K, Izawa K. Smoke production from cell wall materials of tobacco leaves. Beitr Tabakforsch Int. 1991;15(1):1–10.

    CAS  Google Scholar 

  20. Sung YJ, Seo YB. Thermogravimetric study on stem biomass of Nicotiana tabacum. Thermochim Acta. 2009;486(1–2):1–4.

    Article  CAS  Google Scholar 

  21. Wang W, Wang Y, Yang L, Liu B, Lan M, Sun W. Studies on thermal behavior of reconstituted tobacco sheet. Thermochim Acta. 2005;437(1–2):7–11.

    Article  CAS  Google Scholar 

  22. Ge S, Xu Y, Tian Z, Zhou S, She S, Hu Y, Sheng L. Effect of urea phosphate on thermal decomposition of reconstituted tobacco and CO evolution. J Anal Appl Pyrolysis. 2012;99:178–83.

    Article  Google Scholar 

  23. Unni BG, Borah A, Wann SB, Singh HR, Devi B, Bhattacharjee M. Phytochemical and antibacterial study of traditional medicinal plants of north east India on Escherichia coli. Asian J Exp Sci. 2009;23(1):103–8.

    CAS  Google Scholar 

  24. Sun YC, Wen JL, Xu F, Sun RC. Structural and thermal characterization of hemicelluloses isolated by organic solvents and alkaline solutions from Tamarix austromongolica. Bioresour Technol. 2011;102(10):5947–51.

    Article  CAS  Google Scholar 

  25. Arockiasamy A, Toghiani H, Oglesby D, Horstemeyer M, Bouvard J, King RL. TG–DSC–FTIR–MS study of gaseous compounds evolved during thermal decomposition of styrene–butadiene rubber. J Therm Anal Calorim. 2013;111(1):535–42.

    Article  CAS  Google Scholar 

  26. Madhurambal G, Mariappan M, Hariharan S, Ramasamy P, Mojumdar S. Thermal and FTIR spectral studies of various proportions of zinc magnesium ammonium sulfate. J Therm Anal Calorim. 2013;112(2):1031–7.

    Article  CAS  Google Scholar 

  27. Madhurambal G, Prabha N, Lakshmi S, Mojumdar S. Thermal, UV, FTIR, and XRD studies of urinary stones. J Therm Anal Calorim. 2013;112(2):1067–75.

    Article  CAS  Google Scholar 

  28. Zhu H, Yan H, Jiang X, Lai Y, Cen K. Study on pyrolysis of typical medical waste materials by using TG–FTIR analysis. J Hazard Mater. 2008;153(1–2):670–6.

    Article  CAS  Google Scholar 

  29. Buryan P, Staff M. Pyrolysis of the waste biomass. J Therm Anal Calorim. 2008;93(2):637–40.

    Article  CAS  Google Scholar 

  30. Fu P, Hu S, Xiang J, Li P, Huang D, Jiang L, Zhang A, Zhang J. FTIR study of pyrolysis products evolving from typical agricultural residues. J Anal Appl Pyrolysis. 2010;88(2):117–23.

    Article  CAS  Google Scholar 

  31. Biagini E, Barontini F, Tognotti L. Devolatilization of biomass fuels and biomass components studied by TG/FTIR technique. Ind Eng Chem Res. 2006;45(13):4486–93.

    Article  CAS  Google Scholar 

  32. Kai Y, Zhang C, Yu L, Shu R. Effects of moisture content in cigarette smoke on sensory coziness. Tob Sci Technol. 2009;7(9):9–11 (in Chinese).

    Google Scholar 

  33. Browne C, Keith C, Allen R. The effect of filter ventilation on the yield and composition of mainstream and sidestream smokes. Beitr Tabakforsch. 1980;10(2):81–90.

    CAS  Google Scholar 

  34. Zhou S, Wang C, Xu Y, Hu Y. The pyrolysis of cigarette paper under the conditions that simulate cigarette smouldering and puffing. J Therm Anal Calorim. 2011;104(3):1097–106.

    Article  CAS  Google Scholar 

  35. Baker RR, Bishop LJ. The pyrolysis of tobacco ingredients. J Anal Appl Pyrolysis. 2004;71(1):223–311.

    Article  CAS  Google Scholar 

  36. Baker RR. Smoke generation inside a burning cigarette: modifying combustion to develop cigarettes that may be less hazardous to health. Prog Energy Combust Sci. 2006;32(4):373–85.

    Article  CAS  Google Scholar 

  37. Burton H, Childs G Jr. Thermal degradation of tobaccos. VII. Influence of atmosphere on the formation of gas phase constituents. Beitr Tabakforsch. 1977;9:45–52.

    CAS  Google Scholar 

  38. Biagini E, Lippi F, Petarca L, Tognotti L. Devolatilization rate of biomasses and coal–biomass blends: an experimental investigation. Fuel. 2002;81(8):1041–50.

    Article  CAS  Google Scholar 

  39. Kastanaki E, Vamvuka D, Grammelis P, Kakaras E. Thermogravimetric studies of the behavior of lignite–biomass blends during devolatilization. Fuel Process Technol. 2002;77–78:159–66.

    Article  Google Scholar 

Download references

Acknowledgements

The financial supports from the China National Tobacco Corporation (No. 110200901002) and the China Tobacco Shandong Industrial Corporation (No. 201101003) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., She, S., Xu, Z. et al. Effect of exogenous softwood on thermal decomposition of reconstituted tobacco sheet. J Therm Anal Calorim 117, 893–900 (2014). https://doi.org/10.1007/s10973-014-3832-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3832-1

Keywords

Navigation