Skip to main content
Log in

Thermodynamics of complex formation between Cu(II) and glycyl–glycyl–glycine in water–ethanol and water–dimethylsulfoxide solvents

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The paper provides an overview of own data on complex formation between Cu(II) and glycyl–glycyl–glycine in water and water–organic mixed solvents. Calorimetric and potentiometric methods were employed for the study of complex formation between Cu(II) with zwitterion of glycyl–glycyl–glycine and anion of glycyl–glycyl–glycine in water–ethanol and water–dimethylsulfoxide solvents. Stability of [CuHL]2+ and [CuL]+ grows with increase in concentration of both non-aqueous components in solvents. A monotonic increase in the exothermicity of [CuHL]2+ complexation with the addition of ethanol to water was observed. The enthalpy of [CuL]+ complex formation has changed with an exothermic peak at 0.1 ÷ 0.3 mol fractions of ethanol. The main solvation contributions which control the exothermicity increasing of [CuL]+ complex formation reaction and the stability of [CuHL]2+ in H2O–EtOH solvent were not established. However, the resolvation of ligands is the key factor for growth of the stability of both [CuHL]2+ and [CuL]+ complexes in H2O–DMSO solvent as well as the stability of [CuL]+ and the exothermicity of [CuHL]2+ complex formation in H2O–EtOH mixtures. Proper data are compared with data reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. La Mendola D, Magrì A, Vagliasindi IL, Hansson Ö, Bonomo PR, Rizzarelli E. Copper(II) complex formation with a linear peptide encompassing the putative cell binding site of angiogenin. Dalton Trans. 2010;44(39):10678–84. doi:10.1039/C0DT00732C.

    Article  Google Scholar 

  2. Magrì A, Munzone A, Peana M, Medici S, Zoroddu MA, Hansson Ö, Satriano C, Rizzarelli E, La Mendola D. Coordination environment of Cu(II) ions bound to N-terminal peptide fragments of angiogenin protein. Int J Mol Sci. 2016;17(8):1240–59. doi:10.3390/ijms17081240.

    Article  Google Scholar 

  3. Angkawijaya AE, Fazary AE, Ismadji S, Ju Y-H. Cu(II), Co(II), and Ni(II)-antioxidative phenolate-glycine peptide systems: an insight into its equilibrium solution study. J Chem Eng Data. 2012;57:3443–51. doi:10.1021/je300589r.

    Article  CAS  Google Scholar 

  4. Farkas E, Sóvágó I. Metal complexes of amino acids and peptides. Amino Acids Pept Protein. 2012;37:66–118. doi:10.1039/9781849734677-00066.

    CAS  Google Scholar 

  5. Wyrzykowski D, Zarzeczan’ska D, Jacewicz D, Churzyn’ski L. Investigation of copper(II) complexation by glycylglycine using isothermal titration calorimetry. J Therm Anal Calorim. 2011;105:1043–7. doi:10.1007/s10973-011-1426-8.

    Article  CAS  Google Scholar 

  6. Yamauchi O, Nakao Y, Nakahara A. Stability of fused rings in metal chelates. X. Structures and stability constants of the copper(II) complexes of tripeptides composed of glycine and/or β-alanine. Bull Chem Soc Jpn. 1973;46(7):2119–24. doi:10.1246/bcsj.46.2119.

    Article  CAS  Google Scholar 

  7. Brunetti A, Lim M, Nancollas G. Thermodynamics of ion association. XVII. Copper complexes of diglycine and triglycine. J Am Chem Soc. 1968;90(19):5120–6. doi:10.1021/ja01021a012.

    Article  CAS  Google Scholar 

  8. Sigel H, Griesser R, Prijs B. Ternary complexes in solution. XII. Models for biological mixed-ligand complexes: 2,2′-bipyridyl-Cu2+-oligoglycine systems. Naturforsch. 1972;27:353–64.

    CAS  Google Scholar 

  9. Koval C, Margerum D. Determination of the self-exchange electron-transfer rate constant for a copper(III/II) tripeptide complex by 1H NMR line broadening. Inorg Chem Acta. 1981;20(7):2311–8. doi:10.1021/ic50221a074.

    Article  CAS  Google Scholar 

  10. Ilakin VS, Shtyrlin VG, Zakharov AV, Kon’kin AL. Structure, stability and lability of copper(II) complexes with triglycine. Russ J Gen Chem. 2002;72(3):349–57. doi:10.1023/A:1015475113426.

    Article  CAS  Google Scholar 

  11. Gesse ZhF, Repkin GI, Isaeva VA, Sharnin VA. The influence of reagents solvation on enthalpy change of glycine-ion protonation and silver(I) glycine-ion complexation in aqueous-dimethylsulfoxide solutions. J Therm Anal Cal. 2013;110(3):1457–62. doi:10.1007/s10973-011-2127-z.

    Article  Google Scholar 

  12. Tsurko EN, Bondarev NV, Shihova TM, Hrebto EV. Effect of physicochemical properties of water-wropane-2-ol mixture and temperature on thermodynamics of Cu complexation with glycine. Rus J Coord Chem. 2005;31(4):291–8. doi:10.1007/s11173-005-0091-5.

    Article  CAS  Google Scholar 

  13. Ishiguro S, Pithprecha T, Ohlaki H. Potentiometric and calorimetric studies on formation of glycinato complexes of nickel(II) in water and in an aqueous dioxane solution. Bull Chem Soc Jpn. 1986;59(5):1487–91. doi:10.1246/bcsj.59.1487.

    Article  CAS  Google Scholar 

  14. Fan J, Shen X, Wang J. Determination of stability constants of copper(II)-glycine complex in mixed solvents by coppeг(II)-selective electrode. Electroanalysis. 2001;13(13):1115–8. doi:10.1002/15214109(200109)13:13<1115:AID-ELAN1115>3.0.CO;2-9.

    Article  CAS  Google Scholar 

  15. Gergely A, Kiss T. Thermodynamic study of copper(II) and nickel(II) complexes of alanine in mixed solvents. J Inorg Nucl Chem. 1977;39(1):109–14. doi:10.1016/0022-1902(77)80442-9.

    Article  CAS  Google Scholar 

  16. Mikheev SV, Sharnin VA, Shormanov VA, Talanova MN. Thermochemistry of copper(II) ion solvation in aqueous organic solvents. J Therm Anal. 1995;45(4):715–20. doi:10.1007/BF02548886.

    Article  CAS  Google Scholar 

  17. Sharnin VA. Thermochemistry of formation of copper(II)-ethylendiamine complexes and solvation of reagents in aqueous organic solvents. J Therm Anal. 1995;45(4):721–8.

    Article  CAS  Google Scholar 

  18. Usacheva TR, Pham Thi L, Terekhova IV, Kumeev RS, Sharnin VA. Thermodynamics of molecular complexation of glycyl-glycyl-glycine with cryptand [2.2.2] in water–dimethylsulfoxide solvent at 298.15 K. J Therm Anal Cal. 2016;126:307–14. doi:10.1007/s10973-016-5383-0.

    Article  CAS  Google Scholar 

  19. Pham Thi L, Usacheva TR, Tukumova NV, Koryshev NE, Khrenova TM, Sharnin VA. Thermodynamics of the formation of Cu2+–glycyl-glycyl-glycine complex in water–ethanol solutions at 298 K. Russ J Phys Chem A. 2016;90(10):1960–4. doi:10.1134/S0036024416100113.

    Article  CAS  Google Scholar 

  20. Pham Thi L, Usacheva TR, Tukumova NV, Koryshev NE, Khrenova TM, Sharnin VA. Constants and thermodynamics of the acid–base equilibria of triglycine in water–ethanol solutions with sodium perchlorate at 298 K. Russ J Phys Chem A. 2016;90(2):216–21. doi:10.1134/S0036024416020138.

    Google Scholar 

  21. Pham Thi L, Usacheva TR, Sharnin VA. Thermodynamic characteristics of acid–base equilibria of glycyl-glycyl-glycine in water–ethanol solutions at 298 K. Russ J Phys Chem A. 2016;90(12):2387–92. doi:10.1134/S0036024416120098.

    Article  CAS  Google Scholar 

  22. Krestov GA. Thermodynamics of ionic processes in solutions. Leningrad: Khimiya; 1984 (in Russian).

    Google Scholar 

  23. Vasil’ev VP, Borodin VA, Borodin VA, Kozlovskii EV. The use of computers in chemical-analytical calculations. Moscow: High school; 1993 (in Russian).

    Google Scholar 

  24. Lur’e YY. Handbook of analytical chemistry. Moscow: Khimiya; 1989 (in Russian).

    Google Scholar 

  25. Woolley E, Hurkot D, Hepler L. Ionization constants for water in aqueous organic mixtures. J Phys Chem. 1970;74(22):3908–13. doi:10.1021/j100716a011.

    Article  Google Scholar 

  26. Vasil’ev VP. Thermodynamic properties of solutions of electrolytes. Moscow: Vyssh. Shkola; 1982 (in Russian).

    Google Scholar 

  27. Nazarenko VA, Antonovich VP, Nevskaya EM. The hydrolysis of metal ions in diluted solutions. Moscow: Atomizdat; 1979 (in Russian).

    Google Scholar 

  28. Buschmann HJ, Schollmeyer E. A test reaction from macrocyclic chemistry for calorimetric titrations. Thermochim Acta. 1999;333(1):49–53. doi:10.1016/S0040-6031(99)00096-9.

    Article  CAS  Google Scholar 

  29. Bertrand GL, Millero FJ, Wu C, Hepler JG. Thermochemical investigations of the water–ethanol and water–methanol solvent systems. I. Heats of mixing, heats of solution, and heats of ionization of water. J Phys Chem. 1966;70(3):699–705. doi:10.1021/j100875a015.

    Article  CAS  Google Scholar 

  30. Usacheva TR, Pham TL, Sharnin VA. ITC study of complex formation between Cu(II) and glycyl-glycyl-glycine in water–ethanol solvents. XXXVIII National Congress on Calorimetry, Thermal Analysis and Applied Thermodynamics, September 25–28, 2016, Ischia, Italy, p. 85.

  31. Kalidas C, Hefter G, Marcus Y. Gibbs energies of transfer of cations from water to mixed aqueous organic solvents. Chem Rev. 2000;100(3):819–52. doi:10.1021/cr980144k.

    Article  CAS  Google Scholar 

  32. Usacheva TR, Kuz’mina KI, Pham TL, Kuz’mina IA, Sharnin VA. Gibbs energies of transferring triglycine from water into H2O–DMSO solvent. Russ J Phys Chem A. 2014;88(8):1357–60. doi:10.1134/S0036024414080305.

    Article  CAS  Google Scholar 

  33. Lewandowski A. Ionic solvation III. Free energies of transfer of copper(II) ion from water to sulfolane, tetrahydrofuran, aceton, dioxan and dimethyl-sulphoxide and to their mixtures with water. Electrochim Acta. 1986;31(l):59–61. doi:10.1016/0013-4686(86)80061-5.

    Article  CAS  Google Scholar 

  34. Nozaki Y, Tanford C. The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions: establishment of a hydrophobicity scale. J Biol Chem. 1971;246(10):2211–7.

    CAS  Google Scholar 

  35. Lewandowski A. Ionic solvation I. Free energies of transfer of copper(II) ion from water to alcohols and to their mixtures with water. Electrochim Acta. 1984;29(4):547–50. doi:10.1016/0013-4686(84)87107-8.

    Article  CAS  Google Scholar 

  36. Smirnov VI, Badelin VG. Enthalpies of solution of glycylglycine and diglycylglycine in aqueous alcohols at 298.15 K. Thermochim Acta. 2008;471:97–9. doi:10.1016/j.tca.2008.01.020.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed at the Research Institute of Thermodynamics and Kinetics of Chemical Processes of the ISUCT and was carried out under grant of Council on grants of the President of the Russian Federation (project 14.Z56.16.5118-MK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Usacheva.

Ethics declarations

Conflict of interest

The authors confirm that this article content has not conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usacheva, T.R., Pham Thi, L., Kuzmina, K.I. et al. Thermodynamics of complex formation between Cu(II) and glycyl–glycyl–glycine in water–ethanol and water–dimethylsulfoxide solvents. J Therm Anal Calorim 130, 471–478 (2017). https://doi.org/10.1007/s10973-017-6207-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6207-6

Keywords

Navigation