Skip to main content
Log in

Preparation and thermal reliability of N-butyl stearate/methyl palmitate composite phase change material

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, a series of binary mixtures of N-butyl stearate (nBS) and methyl palmitate (MP) were used to produce a novel composite phase change material (CPCM) for potential application in the eastern China, and their thermal properties were investigated by differential scanning calorimetry (DSC). The results of DSC indicated that the mixture consisting of 10 mass% nBS and 90 mass% MP is optimum as the CPCM in terms of the phase change temperature ranges (T f = 19.74–5.59 °C; T m = 18.34–33.80 °C) and latent heats (ΔH f = 176.8 J g−1; ΔH m = 189.3 J g−1). On the other hand, the thermal reliability and chemical stability of the CPCM after 120, 180, 240, 300, 360 and 500 accelerated thermal cycling tests were studied by DSC and fourier transform infrared (FTIR) analysis. The results demonstrated that the CPCM had good thermal reliability and chemical stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev. 2009;13(2):318–45.

    Article  CAS  Google Scholar 

  2. Karaipekli A, Sarı A. Preparation and characterization of fatty acid ester/building material composites for thermal energy storage in buildings. Energy Build. 2011;43(8):1952–9.

    Article  Google Scholar 

  3. Lee KO, Medina MA, Sun XQ. On the use of plug-and play walls (PPW) for evaluating thermal enhancement technologies for building enclosures: evaluation of a thin phase change material (PCM) layer. Energy Build. 2015;86:86–92.

    Article  Google Scholar 

  4. Genc ZK, Canbay CA, Acar SS. Preparation and thermal properties of heterogeneous composite phase change materials based on camphene–palmitic acid. J Therm Anal Calorim. 2015;120(3):1679–88.

    Article  CAS  Google Scholar 

  5. Zhou D, Zhao CY, Tian Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl Energy. 2012;92:593–605.

    Article  CAS  Google Scholar 

  6. Wang XW, Lu ER, Lin WX. Micromechanism of heat storage in a binary system of two kinds of polyalcohols as a solid-solid phase change material. Energy Convers Manag. 2000;41(2):135–44.

    Article  CAS  Google Scholar 

  7. Tong B, Tan ZC, Liu RB, Meng CG, Zhang JN. Thermodynamic investigation of a solid-solid phase change material: 2-amino-2-methyl-1,3-propanediol by calorimetric methods. Energy Convers Manag. 2010;51(10):1905–10.

    Article  CAS  Google Scholar 

  8. Zhao CY, Zhang GH. Review on microencapsulated phase change materials (MEPCMs): fabrication, characterization and applications. Renew Sustain Energy Rev. 2011;15(8):1675–95.

    Article  Google Scholar 

  9. Kuznik F, David D, Johannes K, Roux JJ. A review on phase change materials integrated in building walls. Renew Sustain Energy Rev. 2011;15(1):379–91.

    Article  CAS  Google Scholar 

  10. Zhong Y, Guo Q, Li S, Shi J, Lang L. Heat transfer enhancement of paraffin wax using graphite foam for thermal energy storage. Sol Energy Mater Sol Cells. 2009;94(6):1011–4.

    Article  Google Scholar 

  11. Yu HT, Gao JM, Chen Y, Zhao Y. Preparation and properties of stearic acid/expanded graphite composite phase change material for low-temperature solar thermal application. J Therm Anal Calorim. 2016;124(1):87–92.

    Article  CAS  Google Scholar 

  12. Yuan YP, Li TY, Zhang N, Cao XL, Yang XJ. Investigation on thermal properties of capric-palmitic-stearic acid/activated carbon composite phase change materials for high-temperature cooling application. J Therm Anal Calorim. 2016;124(2):881–8.

    Article  CAS  Google Scholar 

  13. Wang Y, Xia TD, Zheng H, Feng HX. Stearic acid/silica fume composite as form-stable phase change material for thermal energy storage. Energy Build. 2011;43(9):2365–70.

    Article  Google Scholar 

  14. Gu XB, Qin S, Wu X, Li Y, Liu YX. Preparation and thermal characterization of sodium acetate trihydrate/expanded graphite. J Therm Anal Calorim. 2016;125(2):831–8.

    Article  CAS  Google Scholar 

  15. Li JL, Xue P, He H, Ding WY, Han JM. Preparation and application effects of a novel form-stable phase change material as the thermal storage layer of an electric floor heating system. Energy Build. 2009;41(8):871–80.

    Article  Google Scholar 

  16. Jiang MJ, Song XQ, Xu JJ, Ye GD. Preparation of a new thermal regulating fiber based on PVA and paraffin. Sol Energy Mater Sol Cells. 2008;92(12):1657–60.

    Article  CAS  Google Scholar 

  17. Su WG, Darkwa J, Kokogiannakis G. Review of solid-liquid phase change materials and their encapsulation technologies. Renew Sustain Energy Rev. 2015;48:373–91.

    Article  CAS  Google Scholar 

  18. Chen F, Wolcott M. Polyethylene/paraffin binary composites for phase change material energy storage in building: a morphology, thermal properties, and paraffin leakage study. Sol Energy Mater Sol Cells. 2015;137:79–85.

    Article  CAS  Google Scholar 

  19. Yan QY, Liang C, Zhang L. Experimental study on the thermal storage performance and preparation of paraffin mixtures used in the phase change wall. Sol Energy Mater Sol Cells. 2008;92(11):1526–32.

    Article  CAS  Google Scholar 

  20. Sarı A, Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl Therm Eng. 2007;27(8–9):1271–7.

    Article  Google Scholar 

  21. Krupa I, Nogellova Z, Spitalsky Z, Janigova I, Boh B, Sumiga B, Kleinova A, Karkri M, Almaadeed MA. Phase change materials based on high-density polyethylene filled with microencapsulated paraffin wax. Energy Convers Manag. 2014;87:400–9.

    Article  CAS  Google Scholar 

  22. Cai YB, Xu XL, Gao CT, Bian TY, Qiao H, Wei QF. Structural morphology and thermal performance of composite phase change materials consisting of capric acid series fatty acid eutectics and electrospun polyamide6 nanofiber for thermal energy storage. Mater Lett. 2012;89:43–6.

    Article  CAS  Google Scholar 

  23. Sarı A, Karaipekli A, Alkan C. Preparation, characterization and thermal properties of lauric acid/expanded perlite as novel form-stable composite phase change material. Chem Eng J. 2009;155(3):899–904.

    Article  Google Scholar 

  24. Zuo JG, Li WZ, Weng LD. Thermal performance of caprylic acid/1-dodecanol eutectic mixture as phase change material (PCM). Energy Build. 2011;43(1):207–10.

    Article  Google Scholar 

  25. Karaipekli A, Sarı A. Capric-myristic acid/vermiculite composite as form-stable phase change material for thermal energy storage. Sol Energy. 2009;83(3):323–32.

    Article  CAS  Google Scholar 

  26. Zhang N, Yuan YP, Yuan YG, Li TY, Cao XL. Lauric-palmitic-stearic acid/expanded perlite composite as form-stable phase change material: preparation and thermal properties. Energy Build. 2014;82:505–11.

    Article  Google Scholar 

  27. Sharma RK, Ganesan P, Tyagi VV. Long-term thermal and chemical reliability study of different organic phase change materials for thermal energy storage applications. J Therm Anal Calorim. 2016;124(3):1357–66.

    Article  CAS  Google Scholar 

  28. Pielichowska K, Pielichowski K. Phase change materials for thermal energy storage. Prog Mater Sci. 2014;65:67–123.

    Article  CAS  Google Scholar 

  29. Xu S, Zou LM, Ling XL, Wei YZ, Zhang SK. Preparation and thermal reliability of methyl palmitate/methyl stearate mixture as a novel composite phase change material. Energy Build. 2014;68:372–5.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Program of Science and Technology Commission of Shanghai Municipality (15DZ1203704 and 16DZ1204905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, J., Wu, C., Zou, L. et al. Preparation and thermal reliability of N-butyl stearate/methyl palmitate composite phase change material. J Therm Anal Calorim 128, 1273–1278 (2017). https://doi.org/10.1007/s10973-017-6112-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6112-z

Keywords

Navigation