Skip to main content
Log in

Investigation of catalytic activity of ZnAl2O4 and ZnMn2O4 nanoparticles in the thermal decomposition of ammonium perchlorate

Structural and kinetic studies

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

ZnAl2O4 and ZnMn2O4 nanoparticles were synthesized by a modified co-precipitation method and characterized by means of Fourier transform infrared spectroscopy, X-ray diffraction, energy-dispersion X-ray spectrometer, and their morphology investigated by means of scanning electron microscopy. The effects of these nanoparticles on the thermal decomposition of ammonium perchlorate (AP) were examined by differential scanning calorimetery and thermogravimetery analyses. The results revealed that ZnAl2O4 nanoparticles have little catalytic effect on this process, but ZnMn2O4 nanoparticles have good catalytic effect on decreasing the decomposition temperature of AP and increasing the released heat. ZnAl2O4 and ZnMn2O4 nanoparticles increased the released heat of AP decomposition from 400 to about 736 and 1130 Jg−1, respectively, and AP decomposition temperature decreased from 420 to 400 and 358 °C in the same order. The higher catalytic activity of ZnMn2O4 can be due to its p-type semiconductivity and the presence of some positive hole and defects. Also, the kinetic parameters such as pre-exponential factor and activation energy were calculated using Kissinger method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boldyrev VV. Thermal decomposition of ammonium perchlorate. Thermochim Acta. 2006;443(1):1–36.

    Article  CAS  Google Scholar 

  2. Dedgaonkar V, Sarwade D. Effects of different additives on the thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 1990;36(1):223–9.

    Article  CAS  Google Scholar 

  3. Chen LJ, Li GS, Li LP. CuO nanocrystals in thermal decomposition of ammonium perchlorate: stabilization, structural characterization and catalytic activities. J Therm Anal Calorim. 2008;91(2):581–7.

    Article  CAS  Google Scholar 

  4. Singh G, Kapoor IPS, Dubey R, Srivastava P. Synthesis, characterization and catalytic activity of CdO nanocrystals. Mater Sci Eng, B. 2011;176(2):121–6.

    Article  CAS  Google Scholar 

  5. Zhang Y, Liu X, Nie J, Yu L, Zhong Y, Huang C. Improve the catalytic activity of α-Fe2O3 particles in decomposition of ammonium perchlorate by coating amorphous carbon on their surface. J Solid State Chem. 2011;184(2):387–90.

    Article  CAS  Google Scholar 

  6. Hosseini SG, Toloti SJ, Babaei K, Ghavi A. The effect of average particle size of nano-Co3O4 on the catalytic thermal decomposition of ammonium perchlorate particles. J Therm Anal Calorim. 2016;124(3):1243–54.

    Article  CAS  Google Scholar 

  7. Ayoman E, Hosseini SG. Synthesis of CuO nanopowders by high-energy ball-milling method and investigation of their catalytic activity on thermal decomposition of ammonium perchlorate particles. J Therm Anal Calorim. 2016;123(2):1213–24.

    Article  CAS  Google Scholar 

  8. Yin JZ, Lu QY, Yu ZN, Wang JJ, Pang H, Gao F. Hierarchical ZnO nanorod-assembled hollow superstructures for catalytic and photoluminescence applications. Cryst Growth Des. 2009;10(1):40–3.

    Article  Google Scholar 

  9. Sun X, Qiu X, Li L, Li G. ZnO twin-cones: synthesis, photoluminescence, and catalytic decomposition of ammonium perchlorate. Inorg Chem. 2008;47(10):4146–52.

    Article  CAS  Google Scholar 

  10. Zhao S, Ma D. Preparation of CoFe2O4 nanocrystallites by solvothermal process and its catalytic activity on the thermal decomposition of ammonium perchlorate. J Nanomater. 2010;2010:48.

    Google Scholar 

  11. Aijun H, Juanjuan L, Mingquan Y, Yan LI, Xinhua PE. Preparation of nano-MnFe2O4 and its catalytic performance of thermal decomposition of ammonium perchlorate. Chin J Chem Eng. 2011;19(6):1047–51.

    Article  Google Scholar 

  12. Jia Z, Ren D, Wang Q, Zhu R. A new precursor strategy to prepare ZnCo2O4 nanorods and their excellent catalytic activity for thermal decomposition of ammonium perchlorate. Appl Surf Sci. 2013;270:312–8.

    Article  CAS  Google Scholar 

  13. Chen L, Li L, Li G. Synthesis of CuO nanorods and their catalytic activity in the thermal decomposition of ammonium perchlorate. J Alloy Compd. 2008;464(1):532–6.

    Article  CAS  Google Scholar 

  14. Liu T, Wang L, Yang P, Hu B. Preparation of nanometer CuFe 2O4 by auto-combustion and its catalytic activity on the thermal decomposition of ammonium perchlorate. Mater Lett. 2008;62(24):4056–8.

    Article  CAS  Google Scholar 

  15. Wei SH, Zhang SB. First-principles study of cation distribution in eighteen closed-shell AIIB2IIIO 4 and AIVB2IIO4 spinel oxides Phys. Rev B. 2001;63(4):045112.

    Article  Google Scholar 

  16. Nilsson M, Jansson K, Jozsa P, Pettersson LJ. Catalytic properties of Pd supported on ZnO/ZnAl2O4/Al2O3 mixtures in dimethyl ether autothermal reforming. Appl Catal B Environ. 2009;86(1):18–26.

    Article  CAS  Google Scholar 

  17. Wrzyszcz J, Zawadzki M, Trzeciak AM, Ziołkowski JJ. Rhodium complexes supported on zinc aluminate spinel as catalysts for hydroformylation and hydrogenation: preparation and activity. J Mol Catal A Chem. 2002;189:203–10.

    Article  CAS  Google Scholar 

  18. Wrzyszcz J, Zawadzki M, Trzeciak AM, Ziólkowski JJ. Metal-support effects of platinum supported on zinc aluminate. Vaccum. 2002;189(2):203–10.

    CAS  Google Scholar 

  19. Phani AR, Passacantando M, Santucci S. Synthesis and characterization of zinc aluminum oxide thin films by sol–gel technique. Mater Chem Phys. 2001;68(1):66–71.

    Article  CAS  Google Scholar 

  20. Zawadzki M, Wrzyszcz J, Strek W, Hreniak D. Preparation and optical properties of nanocrystalline and nanoporous Tb doped alumina and zinc aluminate. J Alloy Compd. 2001;323:279–82.

    Article  Google Scholar 

  21. Li X, Zhu Z, Zhao Q, Wang L. Photocatalytic degradation of gaseous toluene over ZnAl 2O4 prepared by different methods: a comparative study. J Hazard Mater. 2011;186(2):2089–96.

    Article  CAS  Google Scholar 

  22. Tzing WS, Tuan WH. The strength of duplex Al2O3-ZnAl2O4 composite. J Mater Sci Lett. 1996;15(16):1395–6.

    Article  CAS  Google Scholar 

  23. Courtel FM, Duncan H, Abu-Lebdeh Y, Davidson IJ. High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn2O4 (A = Co, Ni, and Zn). J Mater Chem. 2011;21(27):10206–18.

    Article  CAS  Google Scholar 

  24. Bai Z, Fan N, Sun C, Ju Z, Guo C, Yang J, Qian Y. Facile synthesis of loaf-like ZnMn 2O4 nanorods and their excellent performance in Li-ion batteries. Nanoscale. 2013;5(6):2442–7.

    Article  CAS  Google Scholar 

  25. Choi SH, Kang YC. Characteristics of ZnMn2O4 nanopowders prepared by flame spray pyrolysis for use as anode material in lithium ion batteries. Int J Electrochem Sci. 2013;8:6281.

    CAS  Google Scholar 

  26. Cushing BL, Kolesnichenko VL, O’Connor CJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev. 2004;104(9):3893–946.

    Article  CAS  Google Scholar 

  27. Banerjee M, Verma N, Prasad R. Structural and catalytic properties of Zn1 − xCu xFe2O4 nanoparticles. J Mater Sci. 2007;42(5):1833–7.

    Article  CAS  Google Scholar 

  28. Liu X, Wang X, Zhang J, Hu X, Lu L. A study of nanocrystalline TiO2 preparation with inorganotitanates and gelatin dispersant: thermal analysis of complex gel. Thermochim Acta. 1999;342(1):67–72.

    Article  CAS  Google Scholar 

  29. Birks LS, Fridman H. Particle size determination from X-ray line broadening. J Appl Phys. 1946;17(8):687–92.

    Article  CAS  Google Scholar 

  30. Mcarthur TL, Hutchison T, McKannan J, Cassingham CV, Co-precipitation method. U.S. Patent Application. 2013, 14/384,130.

  31. Harvey D. Modern Analytical Chemistry. New York: McGraw-Hill; 2000.

    Google Scholar 

  32. Cooley RF, Reed JS. Equilibrium cation distribution in NiAl2O4, CuAl2O4, and ZnAl2O4 spinels. J Am Ceram Soc. 1972;55(8):395–8.

    Article  CAS  Google Scholar 

  33. Cullity BD, Stock SR. Elements of X-Ray Diffraction. 3rd ed. Upper Saddle River: Prentice-Hall Inc.; 2001.

    Google Scholar 

  34. Yang Y, Zhao Y, Xiao L, Zhang L. Nanocrystalline ZnMn2O4 as a novel lithium-storage material. Electrochem Commun. 2008;10(8):1117–20.

    Article  CAS  Google Scholar 

  35. Olhero SM, Ganesh I, Torres PM, Ferreira JM. Surface passivation of MgAl2O4 spinel powder by chemisorbing H3PO4 for easy aqueous processing. Langmuir. 2008;24(17):9525–30.

    Article  CAS  Google Scholar 

  36. Fisher GB, Brett AS. Identification of an adsorbed hydroxyl species on the Pt (111) surface. Phys Rev Lett. 1980;44(10):683.

    Article  CAS  Google Scholar 

  37. Phambu N. Characterization of aluminum hydroxide thin film on metallic aluminum powder. Mater Lett. 2003;57(19):2907–13.

    Article  CAS  Google Scholar 

  38. Mazza D, Vallino M, Busca G. Mullite-Type Structures in the Systems Al2O3–Me2O (Me = Na, K) and Al2O3–B2O3. J Am Ceram Soc. 1992;75(7):1929–34.

    Article  CAS  Google Scholar 

  39. Tarte P. Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4 tetrahedra and AlO6 octahedra. Spectrochim Acta Part A. 1967;23(7):2127–43.

    Article  CAS  Google Scholar 

  40. Zhang P, Li X, Zhao Q, Liu S. Synthesis and optical property of one-dimensional spinel ZnMn2O4 nanorods. Nanoscale Res Lett. 2011;6(1):1–8.

    Google Scholar 

  41. Rui SO, Hong-jun WA, Shou-hua FE. Solvothermal Preparation of Mn3O4 Nanoparticles and Effect of Temperature on Particle Size. Chem Res Chin Univ. 2012;28(4):577–80.

    Google Scholar 

  42. Imran M, Al-Masry WA, Mahmood A, Hassan A, Haider S, Ramay SM. Manganese-, cobalt-, and zinc-based mixed-oxide spinels as novel catalysts for the chemical recycling of poly (ethylene terephthalate) via glycolysis. Polym Degrad Stab. 2013;98(4):904–15.

    Article  CAS  Google Scholar 

  43. Hosseini SG, Alavi MA, Ghavi A, Toloti SJ, Agend F. Modeling of burning rate equation of ammonium perchlorate particles over Cu–Cr–O nanocomposites. J Therm Anal Calorim. 2015;119(1):99–109.

    Article  CAS  Google Scholar 

  44. Wang Y, Yang X, Lu L, Wang X. Experimental study on preparation of LaMO3 (M = Fe Co, Ni) nanocrystals and their catalytic activity. Thermochim Acta. 2006;443(2):225–30.

    Article  CAS  Google Scholar 

  45. Liu L, Li F, Tan L, Ming L, Yi Y. Effects of nanometer Ni, Cu, Al and NiCu powders on the thermal decomposition of ammonium perchlorate. Propellant Explos Pyrotech. 2004;29(1):34–8.

    Article  Google Scholar 

  46. Eslami A, Juibari NM, Hosseini SG. Fabrication of ammonium perchlorate/copperchromium oxides core-shell nanocomposites for catalytic thermal decomposition of ammonium perchlorate. Mater Chem Phys. 2016;181:12–20.

    Article  CAS  Google Scholar 

  47. Eslami A, Hosseini SG, Bazrgary M. Improvement of thermal decomposition properties of ammonium perchlorate particles using some polymer coating agents. J Therm Anal Calorim. 2013;113:721–30.

    Article  CAS  Google Scholar 

  48. Li N, Geng Z, Cao M, Ren L, Zhao X, Liu B, Tian Y, Hu C. Well-dispersed ultrafine Mn3O4 nanoparticles on graphene as a promising catalyst for the thermal decomposition of ammonium perchlorate. Carbon. 2013;54:124–32.

    Article  CAS  Google Scholar 

  49. Chaturvedi S, Dave PN. A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate. J Saudi Chem Soc. 2013;17(2):135–49.

    Article  CAS  Google Scholar 

  50. Zhou Z, Tian S, Zeng D, Tang G, Xie C. MOX (M = Zn Co, Fe)/AP shell–core nanocomposites for self-catalytical decomposition of ammonium perchlorate. J Alloy Compd. 2012;513:213–9.

    Article  CAS  Google Scholar 

  51. Alizadeh-Gheshlaghi E, Shaabani B, Khodayari A, Azizian-Kalandaragh Y, Rahimi R. Investigation of the catalytic activity of nano-sized CuO, Co3O4 and CuCo2O4 powders on thermal decomposition of ammonium perchlorate. Powder Technol. 2012;217:330–9.

    Article  CAS  Google Scholar 

  52. Said A. The role of copper-chromium oxide catalysts in the thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 1991;37(5):959–67.

    Article  Google Scholar 

  53. Rosso L, Tuckerman ME. Direct evidence of an anomalous charge transport mechanism in ammonium perchlorate crystal in an ammonia-rich atmosphere from first-principles molecular dynamics. Solid State Ionics. 2003;161(3):219–29.

    Article  CAS  Google Scholar 

  54. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1):1–9.

    Article  CAS  Google Scholar 

  55. Morisaki S, Komamiya K. Differential thermal analysis and thermogravimetry of ammonium perchlorate at pressures up to 51 ATM. Thermochim Acta. 1975;12(3):239–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge a financial support from the research council of University of Mazandaran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Eslami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juibari, N.M., Eslami, A. Investigation of catalytic activity of ZnAl2O4 and ZnMn2O4 nanoparticles in the thermal decomposition of ammonium perchlorate. J Therm Anal Calorim 128, 115–124 (2017). https://doi.org/10.1007/s10973-016-5906-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5906-8

Keywords

Navigation