Skip to main content
Log in

Non-isothermal crystallization of biodegradable polymer (MaterBi)/polyolefin (PP)/hemp fibres ternary composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The non-isothermal crystallization of biodegradable thermoplastic matrix (Mater-Bi®, MB) and traditional thermoplastic (polypropylene, PP) blends was studied using differential scanning calorimetry (DSC). Hemp fibres were used as filler, and maleic anhydride functionalized polypropylene (PP*) was employed as compatibilizer. MB forms immiscible blends with PP. Both, molten MB act as nucleating agent enhancing the crystallization rate of PP and the solidified PP act as nucleating agent to enhance the crystallization of MB. The values of half-time of crystallization (t 1/2) and the parameter Z c, from Avrami’s method which characterize the kinetics of non-isothermal crystallization, showed that the crystallization rate, at the same cooling rate, decreased with the fibres and increased with the PP*; showing the retarding and accelerating effects, respectively. Some models, such as the Liu-Mo and Avrami, were found to provide a fairly satisfactory description of the crystallization kinetics of the studied blends. These results are further supported by the effective activation energy calculations by iso-conversional method of Friedman.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fang Q, Hanna M. Characteristics of biodegradable Mater-Bi®-starch based foams as affected by ingredient formulations. Ind Crop Prod. 2001;13:219–27.

    Article  CAS  Google Scholar 

  2. Bastioli C. Biodegradable Materials. In: Brody AL, Marsh KS, editors. The Wiley encyclopedia of packaging technology. 2nd ed. New Jersey: Wiley; 1987. p. 77–83.

    Google Scholar 

  3. Bastioli C. Biodegradable materials state of art and future perspectives. Antalya: Frontiers in the Science and Technology of the Polymer Recycling; 1997.

    Google Scholar 

  4. Siracusa V, Rocculi P, Romani S, Dalla Rosa M. Biodegradable polymers for food packaging: a review. Trends Food Sci Technol. 2008;19:634–43.

    Article  CAS  Google Scholar 

  5. Arcana M, Bundjali B, Yudistira I, Jariah B, Sukria L. Study on properties of polymer blends from polypropylene with polycaprolactone and their biodegradability. Polym J. 2007;39:1337–44.

    Article  CAS  Google Scholar 

  6. Clarinval AM, Halleux J. Biodegradable polymers for industrial applications. In: Smith R, editor. Chapter 1. Elsevier Editorial. 2000. p. 1–29.

  7. Haque MM, Alvarez V, Paci M, Pracella M. Processing, compatibilization and properties of ternary composites of Mater-Bi with polyolefins and hemp fibres. Compos A Appl Sci. 2011;42:2060–9.

    Article  Google Scholar 

  8. Pracella M, Pancrazi C, Haque MM, D’Alessio A. Thermal and microstructural; characterization of compatibilized polystyrene/natural fillers composites. J Therm Anal Calorim. 2011;103:95–101.

    Article  CAS  Google Scholar 

  9. Pracella M, Haque MM, Alvarez V. Functionalization, compatibilization and properties of polyolefin composites with natural fibres. Polymers. 2010;2:554–74.

    Article  CAS  Google Scholar 

  10. Mwaikambo LY, Ansell MP. Chemical modification of hemp, sisal, jute, and kapok fibres by alkalization. J Appl Polym Sci. 2002;84:2222–34.

    Article  CAS  Google Scholar 

  11. Pracella M, Chionna D, Kulinski Z, Piorkowska E. Functionalization, compatibilization and properties of polypropylene composites with hemp fibres. Compos Sci Technol. 2006;66:2218–30.

    Article  CAS  Google Scholar 

  12. Alvarez V, Mondragón I, Vázquez A. Influence of chemical treatments on the interfacial adhesion between sisal fibre and different biodegradable polymers. Compos Interface. 2007;14:605–16.

    Article  CAS  Google Scholar 

  13. Huang JW, Wen YL, Kang CC, Yeh MY, Wen SB. Morphology, melting behavior, and non-isothermal crystallization of poly(butylene terephthalate)/poly(ethylene-co-methacrylic acid) blends. Termochim Acta. 2007;465:48–58.

    Article  CAS  Google Scholar 

  14. Lin Z, Guan Z, Xu B, Chen C, Guo G, Zhou J, Xian J, Cao L, Wang Y, Li M, Li W. Crystallization and melting behavior of polypropylene in β-PP/polyamide 6 blends containing PP-g-MA. Ind Eng Chem. 2013;19:692–7.

    Article  CAS  Google Scholar 

  15. Lin Z, Xu B, Guan Z, Chen C. Effects of polytrimethylene terephthalate on crystallization and melting behavior of beta-polypropylene in the blends. Ind Eng Chem. 2013;19:926–31.

    Article  CAS  Google Scholar 

  16. Zhou H, Ying J, Liu F, Xie X, Li D. Non-isothermal crystallization behavior and kinetics of isotactic polypropylene/ethylene-octene blends. Part I: crystallization behavior. Polym Test. 2010;29:640–7.

    Article  CAS  Google Scholar 

  17. Zhou H, Ying J, Liu F, Xie X, Li D. Non-isothermal crystallization behavior and kinetics of isotactic polypropylene/ethylene–octene blends. Part II: modeling of crystallization kinetics. Polym Test. 2010;29:915–23.

    Article  CAS  Google Scholar 

  18. Tao Y, Mai K. Non-isothermal crystallization and melting behavior of compatibilized polypropylene/recycled poly(ethylene terephthalate) blends. Eur Polym J. 2007;43:3538–49.

    Article  CAS  Google Scholar 

  19. Alvarez V, Ruseckaite R, Vázquez A. Mechanical properties and water absorption behavior of composites made from a biodegradable matrix and alkaline-treated sisal fibers. J Compos Mater. 2003;37:1575–88.

    Article  CAS  Google Scholar 

  20. Avrami M. Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–6.

    Article  CAS  Google Scholar 

  21. Wunderlich B. Macromolecular physics. New York: Academic Press; 1976.

    Google Scholar 

  22. Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c. Polymer. 1978;19:1142–4.

    Article  CAS  Google Scholar 

  23. Liu TX, Mo ZS, Wang SG, Zhang HF. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ketone). Pol Eng Sci. 1997;37:568–76.

    Article  CAS  Google Scholar 

  24. Vyazovkin S, Sbirrazzuoli N. Isoconversional analysis of calorimetric data on nonisothermal crystallization of a polymer melt. J Phys Chem B. 2003;107:882–8.

    Article  CAS  Google Scholar 

  25. Dobreva A, Gutzow I. Activity of substrates in the catalyzed nucleation of glass-forming melts. II. Experimental evidence. J Non-Cryst Solids. 1993;162:13–25.

    Article  CAS  Google Scholar 

  26. Feng D, Caulfiled DF, Sanadi AR. Effect of compatibilizer on the structure property relationships of kenaf fibre/polypropylene composites. Polym Compos. 2001;22:506–17.

    Article  CAS  Google Scholar 

  27. Doan TTL, Gao SL, Mader E. Jute/polypropylene composites I. Effect of matrix modification. Compos Sci Technol. 2006;66:952–63.

    Article  CAS  Google Scholar 

  28. Majid RA, Ismail H, Taib RM. Effects of polyethylene-g-maleic anhydride on properties of low density polyethylene/thermoplastic sago starch reinforced kenaf fibre composites. Iran Polym J. 2010;19:501–10.

    CAS  Google Scholar 

  29. Yam WY, Ismail J, Kammer HW, Schmidt H, Kummerlöwe C. Polymer blends of poly(ε-caprolactone) and poly(vinyl methyl ether)—thermal properties and morphology. Polymer. 1999;40:5545–52.

    Article  CAS  Google Scholar 

  30. Nam PH, Maiti P, Okamoto M, Kotaka T, Hasegawa N, Usuki A. A hierarchical structure and properties of intercalated polypropylene/clay nanocomposites. Polymer. 2001;42:9633–40.

    Article  CAS  Google Scholar 

  31. Ludueña L, Vázquez A, Alvarez V. Effect of lignocellulosic filler type and content on the behavior of polycaprolactone based eco-composites for packaging applications. Carbohydr Polym. 2012;87:411–21.

    Article  Google Scholar 

  32. He YS, Zeng JB, Li SL, Wang YZ. Crystallization behavior of partially miscible biodegradable poly(butylene succinate)/poly(ethylene succinate) blends. Termochim Acta. 2012;529:80–6.

    Article  CAS  Google Scholar 

  33. Di Lorenzo ML, Silvestre C. Non-isothermal crystallization of polymers. Prog Polym Sci. 1999;24:917–50.

    Article  Google Scholar 

  34. Bin T, Qu JP, Liu LM, Feng YH, Hu SX, Chun Yin X. Non-isothermal crystallization kinetics and dynamic mechanical thermal properties of poly(butylene succinate) composites reinforced with cotton stalk bast fibers. Thermochim Acta. 2011;525:141–9.

    Article  CAS  Google Scholar 

  35. Perez CJ, Alvarez V. Overall crystallization behavior of polypropylene-clay nanocomposites; Effect of clay content and polymer/clay compatibility on the bulk crystallization and spherulitic growth. J App Pol Sci. 2009;114:3248–60.

    Article  CAS  Google Scholar 

  36. Akos IN, Wyasu G, Ladan Z. Effect of fiber load and compatibilization on biodegradation of poly(ε-caprolactone)/poly(lactic acid) composites. Int Res J Mat Sci Eng. 2014;1:2–11.

    Google Scholar 

  37. Puglia D, Kenny JM, Santulli C, Sarasini F, Valente T. Thermal and mechanical characterization of phormium tenax reinforced polypropylene composites. J Thermoplast Compos Mater. Published on line February-2013. doi:10.1177/0892705712473629.

  38. Mofokeng JP, Luyt AS, Tabi T, Kovacs J. Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices. J Thermoplast Compos Mater. 2011;25:927–48.

    Article  Google Scholar 

  39. Zhou M, Li Y, He C, Jin T, Wang K, Fu Q. Interfacial crystallization enhanced interfacial interaction of poly (butylene succinate)/ramie fiber biocomposites using dopamine as a modifier. Compos Sci Technol. 2014;91:22–9.

    Article  CAS  Google Scholar 

  40. Bouza R, Marco C, Ellis G, Martín Z, Gómez MA, Barral L. Analysis of the isothermal crystallization of polypropylene/wood flour composites. J Therm Anal Calorim. 2008;94:119–27.

    Article  CAS  Google Scholar 

  41. Zou P, Tang S, Fu Z, Xiong H. Isothermal and non-isothermal crystallization kinetics of modified rape straw flour/high-density polyethylene composites. Int J Therm Sci. 2009;48:837–46.

    Article  CAS  Google Scholar 

  42. Deshmukh GS, Peshwe DR, Pathak SU, Ekhe JD. Nonisothermal crystallization kinetics and melting behavior ofpoly(butylene terephthalate) (PBT) composites based on different types of functional fillers. Thermochim Acta. 2014;581:41–53.

    Article  CAS  Google Scholar 

  43. Saengsuwan S, Tongkasee P, Sudyoadsuk T, Promarak V, Keawin T, Jungsuttiwon S. Non-isothermal crystallization kinetics and thermal stability of the in situ reinforcing composite films based on thermotropic liquid crystalline polymer and polypropylene. J Therm Anal Calorim. 2011;103:1017–26.

    Article  CAS  Google Scholar 

  44. Alvarez V, Perez CJ. Gamma irradiated LDPE in presence of oxygen. Part I. Non-isothermal crystallization. Thermochim Acta. 2013;570:64–73.

    Article  CAS  Google Scholar 

  45. Pengfei N, Xiaojun W, Baoying L, Shengru L, Jie Y. Melting and nonisothermal crystallization behavior of polypropylene/hemp fiber composites. J Compos Mat. 2011;46:203–10.

    Article  Google Scholar 

  46. Klein N, Selivansky D, Marom G. The effects of a nucleating agent and of fibers on the crystallization of nylon 66 matrices. Polym Compos. 1995;16:189–96.

    Article  CAS  Google Scholar 

  47. Pruiell J, White J. Structure development during polymer processing: Studies of the melt spinning of polyethylene and polypropylene fibers polym. Eng Sci. 1975;15:660–7.

    Google Scholar 

  48. Hsiung C, Cakmak M, White J. Structural gradients in injection molded poly-p- phenylene sulfide: influence of processing conditions and effect on mechanical behavior. Int Polym Proc. 1990;5:109–16.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the National Research Council of Argentina (CONICET) and the National Agency Promotion Scientific and Technological (ANPCyT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Alvarez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez, C.J., Alvarez, V.A. Non-isothermal crystallization of biodegradable polymer (MaterBi)/polyolefin (PP)/hemp fibres ternary composites. J Therm Anal Calorim 120, 1445–1455 (2015). https://doi.org/10.1007/s10973-014-4368-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4368-0

Keywords

Navigation