Skip to main content
Log in

Chitosan-based nanoparticles studied by isothermal titration calorimetry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the last decade, there has been a growing interest on chitosan-based nanomaterials. Chitosan is a polymer exceptionally versatile, biodegradable, biocompatible and with good capacity of mucoadhesivity and permeation-enhancing effect. These features make chitosan a perfect material for the fabrication of polymeric nanoparticles for a variety of applications in the field of pharmaceutics, nutraceutics or cosmetics. This paper discuss on the role of isothermal titration calorimetry (ITC) in the creation of protocols for the preparation of chitosan-based nanoparticles, as well as the role of calorimetry to find chitosan-coating conditions to offer to nanoparticles the desired proprieties for the delivery of drugs, biologics and vaccines. Although several papers of the current literature show the employment of ITC in chitosan-based nanosystems, most of them lack a thermodynamic description. Here, we highlight on two types of systems: chitosan-coating nanoparticles and chitosan-containing nanoparticles. The thermodynamic properties and the energetic aspects of the overall interactions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Johnston APR, Cortez C, Angelatos AS, Caruso F. Layer-by-layer engineered capsules and their applications. Curr Opin Colloid Interface Sci. 2006;11:203–9.

    Article  CAS  Google Scholar 

  2. Rivera Gil P, del Mercato LL, del Pino P, Muñoz Javie A, Parak WJ. Nanoparticle-modified polyelectrolyte capsules. Nanotoday. 2008;3:12–21.

    Google Scholar 

  3. Zhang F, Xu CL, Liu CM. Drug delivery strategies to enhance the permeability of the blood–brain barrier for treatment of glioma. Drug Des Dev Ther. 2015;9:2089–100.

    Article  Google Scholar 

  4. Bhujbal SV, Vos PD, Niclou SP. Drug and cell encapsulation: alternative delivery options for the treatment of malignant brain tumors. Adv Drug Deliv Rev. 2014;67–68:142–53.

    Article  Google Scholar 

  5. van Woensel M, Wauthoz N, Rosière R, Amighi K, Mathieu V, Lefranc F, van Gool SW, de Vleeschouwer S. Formulations for intranasal delivery of pharmacological agents to combat brain disease: a new opportunity to tackle GBM. Cancers. 2013;5:1020–48.

    Article  Google Scholar 

  6. Angelatos AS, Katagiri K, Frank C. Bioinspired colloidal systems via layer-by-layer assembly. Soft Matter. 2006;2:18–23.

    Article  CAS  Google Scholar 

  7. Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs. 2015;13:1133–74.

    Article  CAS  Google Scholar 

  8. Berscht PC, Nies B, Liebendörfer A, Kreuter J. Incorporation of basic fibroblast growth factor into methylpyrrolidinone chitosan fleeces and determination of the in vitro release characteristics. Biomaterials. 1994;15(8):593–600.

    Article  CAS  Google Scholar 

  9. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release. 2004;100:5–28.

    Article  CAS  Google Scholar 

  10. Roberts GA. Chitin chemistry. London: Mac Milan Press Ltd.; 1992.

    Book  Google Scholar 

  11. Jameela SR, Latha PG, Subramoniam A, Jayakrishnan A. Antitumor activity of mitoxantrone-loaded chitosan microspheres against Ehrlich ascites carcinoma. J Pharm Pharmacol. 1996;48:685–8.

    Article  CAS  Google Scholar 

  12. Yousefpour P, Atyabi F, Vasheghani-Farahani E, Movahedi AA, Dinarvand R. Targeted delivery of doxorubicin-utilizing chitosan nanoparticles surface-functionalized with anti-her2 trastuzumab. Int J Nanomed. 2011;6:1977–90.

    CAS  Google Scholar 

  13. Mitra S, Gaur U, Ghosh PC, Maitra AN. Tumor targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. J Control Release. 2001;74:317–8.

    Article  CAS  Google Scholar 

  14. Tahara K, Sakai T, Yamamoto H, Takeuchi H, Kawashima Y. Establishing chitosan coated PLGA nanosphere platform loaded with wide variety of nucleic acid by complexation with cationic compound for gene delivery. Int J Pharm. 2008;354:210–6.

    Article  CAS  Google Scholar 

  15. Guo J, Ping Q, Jiang G, Huang L, Tong Y. Chitosan-coated liposomes: characterization and interaction with leuprolide. Int J Pharm. 2003;260:167–73.

    Article  CAS  Google Scholar 

  16. Volodkin D, Mohwald H, Voegel JC, Ball VJ. Coating of negatively charged liposomes by polylysine: drug release study. J Control Release. 2007;117:111–20.

    Article  CAS  Google Scholar 

  17. Quemeneur F, Rinaudo M, Pépin-Donat B. Influence of polyelectrolyte chemical structure on their interaction with lipid membrane of zwitterionic liposomes. Biomacromolecule. 2008;9:2237–43.

    Article  CAS  Google Scholar 

  18. Mertins O, Lionzo MIZ, Micheletto YMS, Pohlmann AR, Pesce da Silveira N. Chitosan effect on the mesophase behavior of phosphatidylcholine supramolecular systems. Mater Sci Eng, C. 2009;29:463–9.

    Article  CAS  Google Scholar 

  19. Pereira MAV, Fonseca GD, Silva-Júnior AA, Fernandes-Pedrosa MF, de Moura MDF, Barbosa EG, Gomes APB, dos Santos KSCR. Compatibility study between chitosan and pharmaceutical excipients used in solid dosage forms. J Therm Anal Calorim. 2014;116:1091–100.

    Article  CAS  Google Scholar 

  20. Ogawa S, Decker EA, McClements DJ. Influence of environmental conditions on the stability of oil in water emulsions containing droplets stabilized by lecithin-chitosan membranes. J Agric Food Chem. 2003;51:5522–7.

    Article  CAS  Google Scholar 

  21. Guzey D, McClements DJ. Influence of environmental stresses on O/W emulsions stabilized by beta-lactoglobulin–pectin and beta-lactoglobulin–pectin–chitosan membranes produced by the electrostatic layer by layer deposition technique. Food Biophys. 2006;1:30–40.

    Article  Google Scholar 

  22. Doyle ML. Characterization of binding interactions by isothermal titration calorimetry. Curr Opin Biotechnol. 1997;8:31–5.

    Article  CAS  Google Scholar 

  23. Bjelić S, Jelesarov I. A survey of the year 2007 literature on applications of isothermal titration calorimetry. J Mol Recognit. 2008;5:289–312.

    Article  Google Scholar 

  24. Pagano B, Mattia CA, Giancola C. Applications of isothermal titration calorimetry in biophysical studies of G-quadruplexes. Int J Mol Sci. 2009;10:2935–57.

    Article  CAS  Google Scholar 

  25. Ladbury JE, Doyle ML. Biocalorimetry 2: applications of calorimetry in the biological sciences. Chichester: Wiley; 2004.

    Book  Google Scholar 

  26. Martino L, Pagano B, Fotticchia I, Neidle S, Giancola C. Shedding light on the interaction between TMPyP4 and human telomeric quadruplexes. J Phys Chem B. 2009;113:14779–86.

    Article  CAS  Google Scholar 

  27. Pagano B, Fotticchia I, De Tito S, Mattia CA, Mayol L, Novellino E, Randazzo A, Giancola C. Selective binding of distamycin A derivative to G-quadruplex structure [d(TGGGGT)]. J Nucleic Acids. 2010. doi:10.4061/2010/247137.

    Google Scholar 

  28. Wu J, Li J, Li G, Long DG, Weis RM. The receptor binding site for the methyltransferase of bacterial chemotaxis is distinct from the sites of methylation. Biochemistry. 1996;35:4984–93.

    Article  CAS  Google Scholar 

  29. Falconer RJ, Collins BM. Survey of the year 2009: applications of isothermal titration calorimetry. J Mol Recognit. 2010;24:1–16.

    Article  Google Scholar 

  30. Mertins O, Dimova R. Binding of chitosan to phospholipid vesicles studied with isothermal titration calorimetry. Langmuir. 2011;27:5506–15.

    Article  CAS  Google Scholar 

  31. Fotticchia I, Fotticchia T, Mattia CA, Netti PA, Vecchione R, Giancola C. Thermodynamic signature of secondary nano-emulsion formation by isothermal titration calorimetry. Langmuir. 2014;30:14427–33.

    Article  CAS  Google Scholar 

  32. Azevedo JR, Sizilio RH, Brito MB, Costa AMB, Serafini MR, Araújo AAS, Santos MRV, Lira AAM, Nunes RS. Physical and chemical characterization insulin-loaded chitosan-TPP nanoparticles. J Therm Anal Calorim. 2011;106:685–9.

    Article  CAS  Google Scholar 

  33. Robles E, Villar E, Alatorre-Meda M, Burboa MG, Valdez MA, Taboada P, Mosquera V. Effects of the hydrophobization on chitosan-insulin nanoparticles obtained by an alkylation reaction on chitosan. J Appl Polym Sci. 2013;129:822–34.

    Article  CAS  Google Scholar 

  34. Koppolu BP, Smith SG, Ravindranathan S, Jayanthi S, Suresh Kumar TK, Zaharoff DA. Controlling chitosan-based encapsulation for protein and vaccine delivery. Biomaterials. 2014;35:4382–9.

    Article  CAS  Google Scholar 

  35. Li X, Chen M, Yang W, Zhou Z, Liu L, Zhang Q. Interaction of bovine serum albumin with self-assembled nanoparticles of 6-O-cholesterol modified chitosan. Colloids Surf B Biointerfaces. 2012;92:136–41.

    Article  CAS  Google Scholar 

  36. Aktas Y, Andrieux K, Alonso MJ, Calvo P, Gursoy RN, Couvreur P, Capan Y. Preparation and in vitro evaluation of chitosan nanoparticles containing a caspase inhibitor. Int J Pharm. 2005;298:378–83.

    Article  CAS  Google Scholar 

  37. Fernandez-Urrusuno R, Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ. Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res. 1999;16:1576–81.

    Article  CAS  Google Scholar 

  38. Fernandez-Urrusuno R, Romani D, Calvo P, Vila-Jato JL, Alonso MJ. Development of a freeze-dried formulation of insulin-loaded chitosan nanoparticles intended for nasal administration. STP Pharma Sci. 1999;9:429–36.

    CAS  Google Scholar 

  39. Luo Y, Prestwich GD. Synthesis and selective cytotoxicity of a hyaluronic acid-antitumor bioconjugate. Bioconjugate Chem. 1999;10:755–63.

    Article  CAS  Google Scholar 

  40. Ito T, Iida-Tanaka N, Niidome T, Kawano T, Kubo K, Yoshikawa K, Sato T, Yang Z, Koyama Y. Hyaluronic acid and its derivative as a multi-functional gene expression enhancer: protection from non-specific interactions, adhesion to targeted cells, and transcriptional activation. J Control Release. 2006;112:382–8.

    Article  CAS  Google Scholar 

  41. Mok H, Park JW, Park TG. Antisense oligodeoxynucleotide-conjugated hyaluronic acid/protamine nanocomplexes for intracellular gene inhibition. Bioconjugate Chem. 2007;18:1483–9.

    Article  CAS  Google Scholar 

  42. Collis L, Hall C, Lange L, Ziebell M, Prestwich R, Turley EA. Rapid hyaluronan uptake is associated with enhanced motility: implications for an intracellular mode of action. FEBS Lett. 1998;440:444–9.

    Article  CAS  Google Scholar 

  43. Evanko SP, Wight TN. Intracellular localization of hyaluronan in proliferating cells. J Histochem Cytochem. 1999;47:1331–41.

    Article  CAS  Google Scholar 

  44. Ruponen M, Ronkko S, Honkakoski P, Pelkonen J, Tammi M, Urtti A. Extracellular glycosaminoglycans modify cellular trafficking of lipoplexes and polyplexes. J Biol Chem. 2001;276:33875–80.

    Article  CAS  Google Scholar 

  45. Al-Qadi S, Alatorre-Meda M, Zaghloul EM, Taboada P, Remunán-López C. Chitosan–hyaluronic acid nanoparticles for gene silencing: the role of hyaluronic acid on the nanoparticles’ formation and activity. Colloids Surf B Biointerfaces. 2013;103:615–23.

    Article  CAS  Google Scholar 

  46. Ma PL, Lavertu M, Winnik FM, Buschmann MD. New insights into chitosan-DNA interactions using isothermal titration microcalorimetry. Biomacromolecules. 2009;10:1490–9.

    Article  CAS  Google Scholar 

  47. Ball V, Maechling C. Isothermal microcalorimetry to investigate non specific interactions in biophysical chemistry. Int J Mol Sci. 2009;10:3283–315.

    Article  CAS  Google Scholar 

  48. Bouchemal K. New challenges for pharmaceutical formulations and drug delivery systems characterization using isothermal titration calorimetry. Drug Discov Today. 2008;13:960–72.

    Article  CAS  Google Scholar 

  49. Dunitz JD. Win some, lose some: enthalpy-entropy compensation in weak intermolecular interactions. Chem Biol. 1995;2:709–12.

    Article  CAS  Google Scholar 

  50. Chanamai R, McClements DJ. Isothermal titration calorimetry measurement of enthalpy changes in monodisperse oil-in-water emulsions undergoing depletion flocculation. Colloids Surf A. 2001;181:261–9.

    Article  CAS  Google Scholar 

  51. López-León T, Carvalho EL, Seijo B, Ortega-Vinuesa JL, Bastos-González D. Physicochemical characterization of chitosan nanoparticles: electrokinetic and stability behavior. J Colloid Interface Sci. 2005;283:344–51.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by “CARINA” POR Campania FSE 2007–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Concetta Giancola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fotticchia, I., Fotticchia, T., Mattia, C.A. et al. Chitosan-based nanoparticles studied by isothermal titration calorimetry. J Therm Anal Calorim 125, 585–593 (2016). https://doi.org/10.1007/s10973-016-5334-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5334-9

Keywords

Navigation