Skip to main content
Log in

Effect of cooling rate on the solidification characteristics and dendrite coherency point of ADC12 aluminum die casting alloy using thermal analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the metal casting industry, an improvement of component quality depends mainly on better control over the production parameters. Thus, computer-aided cooling curve thermal analysis is a very useful method for easy and fast evaluation of a variety of properties. In this work, the effect of different cooling rates (1.2–7.2 °C s−1) on solidification parameters and dendrite coherency point (DCP) of ADC12 aluminum alloy was investigated by thermal analysis. The results revealed that solidification parameters and dendrite coherency point are influenced by variation of cooling rate. Increasing the cooling rate can increase the temperature interval of coherency (T NT DCP) and coherency fraction solid (\( f_{\text{s}}^{\text{DCP}} \)) about 31 °C and 11 %, respectively, but the coherency time (t DCP) decreases from 130 to 33 s. Therefore, increasing the cooling rate postpones the dendrite coherency, and the dendrites become coherent later.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Bäckerud L, Chai G, Tamminen J. Solidification characteristics of aluminum alloys. Vol. 2. Foundry alloys. Stockholm, Sweden: AFS/Skanaluminium; 1990.

    Google Scholar 

  2. Farahany S, Ourdjini A, Idris MH, Shabestari SG. Investigation of the effect of solidification conditions and silicon modifier/refiner on the nucleation and growth of dendrites in near eutectic Al–Si–Cu–Fe alloy by thermal analysis. J Therm Anal Calorim. 2013;114:705–17.

    Article  CAS  Google Scholar 

  3. Shabestari SG, Malekan M. Thermal analysis study of the effect of the cooling rate on the microstructure and solidification parameters of 319 aluminum alloy. Can Metall Q. 2005;44:305–12.

    Article  CAS  Google Scholar 

  4. Gowri S, Samuel FH. Effect of cooling rate on the solidification behavior of Al-7 Pct Si-SiCp metal-matrix composites. Metall Mater Trans A. 1992;23:3369–76.

    Google Scholar 

  5. Dobrzański LA, Maniara R, Sokołowski J, Kasprzak W. Effect of cooling rate on the solidification behavior of AC AlSi7Cu2 alloy. J Mater Process Technol. 2007;191:317–20.

    Article  Google Scholar 

  6. Hosseini VA, Shabestari SG, Gholizadeh R. Study of the cooling rate on the solidification parameters, microstructure, and mechanical properties of LM13 alloy using cooling curve thermal analysis technique. Mater Des. 2013;50:7–14.

    Article  CAS  Google Scholar 

  7. Mackay RI, Djurdjevic MB, Sokolowski JH. Effect of cooling rate on fraction solid of metallurgical reactions in 319 alloy. AFS Trans. 2000;108:521–30.

    CAS  Google Scholar 

  8. Ghoncheh MH, Shabestari SG, Abbasi MH. Effect of cooling rate on the microstructure and solidification characteristics of Al2024 alloy using computer-aided thermal analysis technique. J Therm Anal Calorim. 2014;117:1253–61.

    Article  CAS  Google Scholar 

  9. Ghoncheh MH, Shabestari SG. Effect of Cooling Rate on the Dendrite Coherency Point during Solidification of Al2024 Alloy. Metall Mater Trans A. 2014;46:1287–99.

    Article  Google Scholar 

  10. Malekan M, Shabestari SG. Effect of grain refinement on the dendrite coherency point during solidification of the A319 aluminum alloy. Metall Mater Trans A. 2009;40:3196–203.

    Article  Google Scholar 

  11. Yuan L, Sullivan CO, Gourlay CM. Exploring dendrite coherency with the discrete element method. Acta Mater. 2012;60:1334–45.

    Article  CAS  Google Scholar 

  12. Stangeland A, Mo A, Nielsen Ø, Eskin DG, Hamdi MM. Development of thermal strain in the coherent mushy zone during solidification of aluminum alloys. Metall Mater Trans A. 2004;35:2903–15.

    Article  Google Scholar 

  13. Chavez-Zamarripa R, Ramos-Salas JA, Talamantes-Silva J, Valtierra S, Colas R. Determination of the dendrite coherency point during solidification by means of thermal diffusivity analysis. Metall Mater Trans A. 2007;38:1875–9.

    Article  Google Scholar 

  14. Veldman NLM, Dahle AK, Stjohn DH, Arnberg L. Dendrite coherency of Al–Si–Cu alloys. Metall Mater Trans A. 2001;32:147–55.

    Article  Google Scholar 

  15. Arnberg L, Backerud L, Chai G. Solidification characteristics of aluminum alloys. Mater Sci Eng A. 1993;173:101–3.

    Article  Google Scholar 

  16. Jiang H, Kierkus WT, Sokolowski JH. Determining dendrite coherency point characteristics of Al alloys using single-thermocouple technique. AFS Trans. 1999;68:169–72.

    Google Scholar 

  17. Arnberg L, Backerud L, Chai G. Solidification characteristics of aluminum alloys. Vol. 3. Dendrite Coherency. Des Plaines, IL: AFS; 1996.

    Google Scholar 

  18. Barlow JO, Stefanescu DM. Computer-aided cooling curve analysis revisited. AFS Trans. 1997;105:349–54.

    CAS  Google Scholar 

  19. Upadhya KG, Stefanescu DM, Lieu K, Yeager DP. AFS Trans. 1989;97:61–6.

    Google Scholar 

  20. Emadi D, Whiting LV. Determination of solidification characteristics of Al–Si alloys by thermal analysis. AFS Trans. 2002;110(02–033):285–96.

    CAS  Google Scholar 

  21. Anantha Narayanan L, Samuel FH, Gruzleski JE. Thermal analysis studies on the effect of cooling rate on the microstructure of 319 aluminum alloys. AFS Trans. 1992;100:383–91.

    CAS  Google Scholar 

  22. Kumar P, Gaindhar JL. DAS, solidification time and mechanical properties of Al-11%Si alloys V-processed castings. AFS Trans. 1997;105:635–8.

    CAS  Google Scholar 

  23. Gowri S. Comparison of thermal analysis parameters of 356 and 359 alloys. AFS Trans. 1994;102:503–8.

    CAS  Google Scholar 

  24. Campbell J. Feeding mechanisms in castings. AFS Cast Metals Res J. 1969;5:1–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Malekan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malekan, M., Naghdali, S., Abrishami, S. et al. Effect of cooling rate on the solidification characteristics and dendrite coherency point of ADC12 aluminum die casting alloy using thermal analysis. J Therm Anal Calorim 124, 601–609 (2016). https://doi.org/10.1007/s10973-015-5232-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5232-6

Keywords

Navigation