Skip to main content
Log in

Study on individual traps in metal–oxide–semiconductor field-effect transistors by means of thermally stimulated threshold voltage shift

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A novel method, thermally stimulated threshold voltage shift (TSTVS), was introduced to investigate individual trap properties in the gate SiO2 oxide film of submicron p-type metal–oxide–semiconductor field-effect transistors (pMOSFETs). TSTVS measures temperature-dependent threshold voltage shift (∆V th(T)). First, electrical stresses are imposed on a pMOSFET to fill traps with carriers, resulting in ∆V th. Second, the sample temperature is raised at a constant rate. The captured carriers are thermally emitted and ∆V th decreases. The trap properties can be revealed from ∆V th(T). Although TSTVS is similar to the conventional thermally stimulated current (TSC) method, there are several advantages, e.g., higher sensitivity and discrimination ability of carrier polarity. TSTVS was applied to a pMOSFET subjected to electrical stress. The TSTVS signal exhibited several abrupt steps corresponding to individual carrier detrappings, meaning that TSTVS could detect even a single trap. In addition, the carrier polarity was determined by the sign of the steps (upsteps or downsteps). We also revealed the trap energy level through repetitive TSTVS measurements. The presence of two traps in the pMOSFET, i.e., hole and amphoteric traps, was confirmed from these features. We also compared the results with the conventional TSC and found that they could be interpreted by using the proposed atomic structures of traps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shanfield Z. Thermally stimulated current measurements on irradiated MOS capacitors. IEEE Nucl Sci Trans. 1983;30:4064–70.

    Article  Google Scholar 

  2. Fleetwood DM, Lu Z-Y, Nicklaw CJ, Felix JA, Schrimpf RD, Pantelides ST. Unified model of hole trapping, 1/f noise, and thermally stimulated current in MOS devices. IEEE Nucl Sci Trans. 2002;49:2674–82.

    Article  CAS  Google Scholar 

  3. Lau WS, Leong LL, Taejoon H, Sandler NP. Detection of oxygen vacancy defect states in capacitors with ultrathin Ta2O5 films by zero-bias thermally stimulated current spectroscopy. Appl Phys Lett. 2003;83:2835–7.

    Article  CAS  Google Scholar 

  4. Lakhdari H, Vuillaume D, Bourgoin JC. Spatial and energetic distribution of Si–SiO2 near-interface states. Phys Rev B. 1988;38:13124–32.

    Article  CAS  Google Scholar 

  5. Kwon HM, Han IS, Bok JD, Park SU, Jung YJ, Lee GW, Chung YS, Lee JH, Kang CY, Kirsch P, Jammy R, Lee HD. Characterization of random telegraph signal noise of high-performance p-MOSFETs with a high-k dielectric/metal gate. IEEE Electron Dev Lett. 2011;32:686–8.

    Article  CAS  Google Scholar 

  6. Wang BC, Wu SL, Lu YY, Chang SJ, Chen JF, Tsai SC, Hsu CH, Yang CW, Chen CG, Cheng O, Huang PC. Comparison of the trap behavior between ZrO2 and HfO2 gate stack nMOSFETs by 1/f noise and random telegraph noise. IEEE Electron Dev Lett. 2013;34:151–3.

    Article  Google Scholar 

  7. Devine RAB, Mathiot D, Warren WL, Fleetwood DM, Aspar B. Point defect generation during high temperature annealing of the Si–SiO2 interface. Appl Phys Lett. 1993;63:2926–8.

    Article  CAS  Google Scholar 

  8. Zhang L, Leisure RG. The E δ′ and triplet-state centers in x-irradiated high-purity amorphous SiO2. J Appl Phys. 1996;80:3744–9.

    Article  CAS  Google Scholar 

  9. Conley JF Jr, Lenahan PM, Lelis AJ, Oldham TR. Electron spin resonance evidence for the structure of a switching oxide trap: long term structural change at silicon dangling bond sites in SiO2. Appl Phys Lett. 1995;67:2179–81.

    Article  CAS  Google Scholar 

  10. Reisinger H, Grasser T, Schlunder C. A study of NBTI by the statistical analysis of the properties of individual defects in pMOSFETS. In: IEEE integrated reliability workshop final report, 2009. pp. 30–35.

  11. Wang T, Chan CT, Tang C-J, Tsai C-W, Wang HC-H, Chi MH, Tang CJ. A novel transient characterization technique to investigate trap properties in HfSiON gate dielectric MOSFETs-from single electron emission to PBTI recovery transient. IEEE Electron Dev Trans. 2006;53:1073–9.

    Article  CAS  Google Scholar 

  12. Grasser T, Kaczer B, Goes W, Reisinger H, Aichinger T, Hehenberger P, Wagner P-J, Schanovsky F, Franco J, Luque MT, Nelhiebel M. The paradigm shift in understanding the bias temperature instability: from reaction-diffusion to switching oxide traps. IEEE Electron Dev Trans. 2011;58:3652–66.

    Article  CAS  Google Scholar 

  13. Asenov A, Balasubramaniam R, Brown AR, Davies JH. RTS amplitudes in decananometer MOSFETs: 3-D simulation study. IEEE Electron Dev Trans. 2003;50:839–45.

    Article  Google Scholar 

  14. Simmons JG, Tam MC. Theory of isothermal currents and the direct determination of trap parameters in semiconductors and insulators containing arbitrary trap distributions. Phys Rev B. 1973;7:3706–13.

    Article  CAS  Google Scholar 

  15. Gaur MS, Rathore BS, Singh PK, Indolia A, Awasthi AM, Bhardwaj S. Thermally stimulated current and differential scanning calorimetry spectroscopy for the study of polymer nanocomposites. J Therm Anal Calorim. 2010;101:315–21.

    Article  CAS  Google Scholar 

  16. Leonardi A, Dantras E, Dandurand J, Lacabanne C. Dielectric relaxations in PEEK by combined dynamic dielectric spectroscopy and thermally stimulated current. J Therm Anal Calorim. 2013;111:807–14.

    Article  CAS  Google Scholar 

  17. Diogo HP, Ramos JJM. Slow molecular mobility in the amorphous thermoplastic polysulfone A TSDC investigation. J Therm Anal Calorim. 2013;113:773–9.

    Article  Google Scholar 

  18. Yonamoto Y, Inaba Y, Akamatsu N. Detection of nitrogen related traps in nitrided/reoxidized silicon dioxide films with thermally stimulated current and maximum entropy method. Appl Phys Lett. 2011;98:232906.

    Article  Google Scholar 

  19. Stesmans A, Afanas’ev VV. Annealing induced degradation of thermal SiO2: S center generation. Appl Phys Lett. 1996;69:2056–8.

    Article  CAS  Google Scholar 

  20. Hiller D, Zierold R, Bachmann J, Alexe M, Yang Y, Gerlach JW, Stesmans A, Jivanescu M, Müller U, Vogt J, Hilmer H, Löper P, Künle M, Munnik F, Nielsch K, Zacharias M. Low temperature silicon dioxide by thermal atomic layer deposition: investigation of material properties. J Appl Phys. 2010;107:064314.

    Article  Google Scholar 

  21. Lelis AJ, Oldham TR, Boesch HE, McLean FB. The nature of the trapped hole annealing process. IEEE Nucl Sci Trans. 1989;36:1808–15.

    Article  CAS  Google Scholar 

  22. Lenahan PM, Campbell JP, Kang AY, Liu ST, Weimer RA. Radiation-induced leakage currents: atomic scale mechanisms. Nucl Sci IEEE Nucl Sci Trans. 2001;48:2101–6.

    Article  CAS  Google Scholar 

  23. Sushko PV, Mukhopadhyay S, Stoneham AM, Shluger AL. Oxygen vacancies in amorphous silica: structure and distribution of properties. Microelectron Eng. 2005;80:292–5.

    Article  CAS  Google Scholar 

  24. Kaczer B, Grasser T, Rousse Ph. J, Franco J, Degraeve R, Ragnarsson L.-A, Simoen E, Groeseneken G, Reisinger H. Origin of NBTI variability in deeply scaled pFETs. In: IEEE international reliability physics symposium, 2010. pp. 2A.3.1-7.

  25. Waltl M, Goes W, Rott K, Reisinger H, Grasser T. A Single-Trap Study of PBTI in SiON nMOS Transistors: Similarities and Differences to the NBTI/pMOS Case. In: IEEE international reliability physics symposium, 2014. pp. XT.18.1-5.

Download references

Acknowledgements

I am very grateful to Dr. I. Yamakawa for the setup for the electrical measurements. I also would like to thank Dr. M. Ito for helping me measure the TSC spectra of SiO2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiki Yonamoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yonamoto, Y. Study on individual traps in metal–oxide–semiconductor field-effect transistors by means of thermally stimulated threshold voltage shift. J Therm Anal Calorim 122, 1299–1305 (2015). https://doi.org/10.1007/s10973-015-5097-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5097-8

Keywords

Navigation