Skip to main content
Log in

Slow molecular mobility in the amorphous thermoplastic polysulfone

A TSDC investigation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermally stimulated depolarization current (TSDC) technique has been used to study the slow molecular mobility of polysulfone in the glassy state and in the glass transformation region, i.e., in the temperature ranging from −155 to 183 °C. Since the polysulfone is a rigid polymer without polar side-groups, a broad and low-intensity secondary relaxation was detected in the temperature region from −120 °C up to the glass transition; the activation energy of the motional modes of this secondary relaxation is in the range between 35 and 100 kJ mol−1. The glass transition temperature of polysulfone provided by the TSDC technique is T M = T g = 176 °C (at 4 °C min−1). The relaxation time at this temperature is τ(T g) = 33 s and the fragility index was found to be m = 91. Our results are compared with literature values obtained by dynamic mechanical analysis and by dielectric relaxation spectroscopy. The amorphous polysulfone was also characterized by DSC; a glass transition signal with an onset at T on = 185.5 ± 0.3 °C (heating rate 10 °C min−1) was detected, with ΔC p = 0.21 ± 0.01 J g−1 °C−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bowry SK, Krieter DH. Dialysis membranes today. Int J Art Organs. 2002;25:447–60.

    CAS  Google Scholar 

  2. Susanto H, Ulbricht M. Characteristics, performance and stability of polyethersulfone ultrafiltration membranes prepared by phase separation method using different macromolecular additives. J Memb Sci. 2009;327:125–35.

    Article  CAS  Google Scholar 

  3. Vico S, Palys B, Buess-Herman C. Hydration of a polysulfone anion-exchange membrane studied by vibrational spectroscopy. Langmuir. 2003;19:3282–7.

    Article  CAS  Google Scholar 

  4. Zornoza B, Irusta S, Téllez C, Coronas J. Mesoporous silica sphere-polysulfone mixed matrix membranes for gas separation. Langmuir. 2009;25:5903–9.

    Article  CAS  Google Scholar 

  5. Gu X, Kuang Y, Guo X, Fang J, Ni Z. Synthesis and drug release properties of poly(ethylene oxide) segmented polysulfone copolymers. J Control Release. 2008;127:267–72.

    Article  CAS  Google Scholar 

  6. Kim Y, Haftel VK, Kumar S, Bellamkonda RV. The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials. 2008;29:3117–27.

    Article  CAS  Google Scholar 

  7. Silva AI, Mateus M. Development of a polysulfone hollow fiber vascular bio-artificial pancreas device for in vitro studies. J Biotechnol. 2009;139:236–49.

    Article  CAS  Google Scholar 

  8. Placek V, Hnat V, Pejsa R, Kohout T. Testing of polysulfone for applications in nuclear facilities. J Appl Polym Sci. 2008;109:2395–9.

    Article  CAS  Google Scholar 

  9. Fried JR, Letton A, Welsh WJ. Secondary relaxation processes in bisphenol-A polysulphone. Polymer. 1990;31:1032–7.

    Article  CAS  Google Scholar 

  10. Aitken CL, McHattie JS, Paul DR. Dynamic mechanical behavior of polysulfones. Macromolecules. 1992;25:2910–22.

    Article  CAS  Google Scholar 

  11. Cangialosi D, Alegría A, Colmenero J. On the temperature dependence of the nonexponentiality in glass-forming liquids—art. no. 124902. J Chem Phys. 2009;130:24902.

    Article  Google Scholar 

  12. Allen G, McAinsh J, Jeffs GM. Relaxation phenomena in some aromatic polymers: effect of water content on the low temperature relaxation. Polymer. 1971;12:85–100.

    Article  CAS  Google Scholar 

  13. Labahn D, Mix R, Schonhals A. Dielectric relaxation of ultrathin films of supported polysulfone. Phys Rev E. 2009;79:011801–9.

    Article  Google Scholar 

  14. Alegría A, Colmenero J, Mari PO, Campbell IA. Dielectric investigation of the temperature dependence of the nonexponentiality of the dynamics of polymer melts. Phys Rev E. 1999;59:6888–95.

    Article  Google Scholar 

  15. Makaya G. Dielectric γ losses in polysulphone and polyethersulphone. Polymer. 1978;19:601–2.

    Article  CAS  Google Scholar 

  16. Moura Ramos JJ, Correia NT, Diogo HP. Rotational mobility in a glassy crystal studied by thermally stimulated depolarisation currents (TSDC). An experiment for the physical chemistry laboratory. Chem Educ. 2009;14:175–9.

    CAS  Google Scholar 

  17. Teyssedre G, Lacabanne C. Some considerations about the analysis of thermostimulated depolarization peaks. J Phys D Appl Phys. 1995;28:1478–87.

    Article  CAS  Google Scholar 

  18. van Turnhout J. Thermally stimulated discharge of polymer electrets. Amsterdam: Elsevier; 1975.

    Google Scholar 

  19. Chen R, Kirsch Y. Analysis of thermally stimulated processes. Oxford: Pergamon Press; 1981.

    Google Scholar 

  20. Sauer BB. Thermally stimulated currents: recent developments in characterisation and analysis of polymers. In: Cheng SZD, editor. Applications to polymers and plastics. Amsterdam: Elsevier; 2002. p. 653–711.

    Chapter  Google Scholar 

  21. Gun’ko VM, Zarko VI, Goncharuk EV, Andriyko LS, Turov VV, Nychiporuk YM, Leboda R, Skubiszewska-Zieba J, Gabchak AL, Osovskii VD, Ptushinskii YG, Yurchenko GR, Mishchuk OA, Gorbik PP, Pissis P, Blitz JP. TSDC spectroscopy of relaxational and interfacial phenomena. Adv Colloid Interface Sci. 2007;131:1–89.

    Article  Google Scholar 

  22. Bucci C, Fieschi R. Ionic thermoconductivity. Method for the investigation of polarization in insulators. Phys Rev Lett. 1964;12:16–9.

    Article  Google Scholar 

  23. Bucci C, Fieschi R, Guidi G. Ionic thermocurrents in dielectrics. Phys Rev. 1966;148:816–23.

    Article  CAS  Google Scholar 

  24. Alegría A, Goitiandia L, Colmenero J. On the interpretation of the TSDC results in the study of the alpha-relaxation of amorphous polymers. Polymer. 1996;37:2915–23.

    Article  Google Scholar 

  25. Goitiandia L, Alegría A. Physical aging of poly(vinyl acetate). A thermally stimulated depolarization current investigation. J Non Cryst Solids. 2001;287:237–41.

    Article  CAS  Google Scholar 

  26. Viciosa MT, Pires G, Moura Ramos JJ. Is the Kohlrausch function a good tool to account for nonexponentiality in thermally stimulated depolarisation currents (TSDC) data treatment? Chem Phys. 2009;359:156–60.

    Article  CAS  Google Scholar 

  27. Viciosa MT, Pires G, Moura Ramos JJ. Revisitation of the molecular mobility of the amorphous solid 4,4′-methylenebis(N,N-diglycidylaniline) (MBDA): new contributions from the TSDC technique. J Mol Liq. 2009;148:114–9.

    Article  CAS  Google Scholar 

  28. Pinto SS, Moura Ramos JJ, Diogo HP. The slow molecular mobility in poly(vinyl acetate) revisited: new contributions from thermally stimulated currents. Eur Polym J. 2009;45:2644–52.

    Article  CAS  Google Scholar 

  29. Moura Ramos JJ, Taveira-Marques R, Diogo HP. Estimation of the fragility index of indomethacin by DSC using the heating and cooling rate dependency of the glass transition. J Pharm Sci. 2004;93:1503–7.

    Article  Google Scholar 

  30. Correia NT, Alvarez C, Moura-Ramos JJ. Fragility in side-chain liquid crystalline polymers: the TSDC contribution. Polymer. 2000;41:8625–31.

    Article  CAS  Google Scholar 

  31. Alvarez C, Correia NT, Moura Ramos JJ, Fernandes AC. Glass transition relaxation and fragility in a side-chain liquid crystalline polymer: a study by TSDC and DSC. Polymer. 2000;41:2907–14.

    Article  CAS  Google Scholar 

  32. Moura Ramos JJ, Correia NT. The Deborah number, relaxation phenomena and thermally stimulated currents. Phys Chem Chem Phys. 2001;3:5575–8.

    Article  CAS  Google Scholar 

  33. Correia NT, Moura Ramos JJ. On the cooperativity of the β-relaxation: a discussion based on dielectric relaxation and thermally stimulated depolarisation currents data. Phys Chem Chem Phys. 2000;2:5712–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in partially by Fundação para a Ciência e a Tecnologia (FCT), Portugal (Project PEst-OE/QUI/UI0100/2011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hermínio P. Diogo or Joaquim J. Moura Ramos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diogo, H.P., Ramos, J.J.M. Slow molecular mobility in the amorphous thermoplastic polysulfone. J Therm Anal Calorim 111, 773–779 (2013). https://doi.org/10.1007/s10973-012-2423-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2423-2

Keywords

Navigation