Skip to main content
Log in

Thermochemical treatment of olive mill solid waste and olive mill wastewater

Pyrolysis kinetics

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In olive-oil-producing countries, large amounts of waste material are generated as by-product for which there is no ready use and in some cases may have a negative value because of the cost of disposal. Most of these countries depend on fossil fuels for their energy uses, and olive mill wastes can be used to supplement such energy sources using thermochemical conversion processes such as pyrolysis. However, efficient operation of thermochemical conversion systems requires a thorough understanding of the influence of the composition and thermal properties of these by-products on their behaviour during the conversion process. In this study, the thermal behaviour of two olive mill wastes samples (olive mill solid waste: OMSW, and concentrated olive mill wastewater: COMWW) was examined at different heating rates ranging from 5 to 50 °C min−1 in inert atmosphere using the technique of thermogravimetric analysis. As the increment of heating rates, the variations of characteristic parameters from the TG-DTG curves were determined. The initial temperature of degradation is higher in OMSW, which present a high amount of cellulose in comparison with COMWW. Three methods were used for the determination of kinetic reaction parameters: Friedman, Ozawa–Flynn–Wall and Vyazovkin methods. The results showed that apparent activation energy obtained for the decomposition of hemicelluloses and cellulose derived from OMSW was given as 150–176 and 210.5–235.7 kJ mol−1, while for COMWW, the values were 133–145 and 255–275 kJ mol−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aktas ES, Imre S, Ersoy L. Characterization and lime treatment of olive mill wastewater. Water Res. 2001;35(9):2336–40.

    Article  CAS  Google Scholar 

  2. Miranda T, Esteban A, Rojas S, Montero I, Ruiz A. Combustion analysis of different olive residues. Int J Mol Sci. 2008;9(4):512–25.

    Article  CAS  Google Scholar 

  3. Achak M, Hafidi A, Ouazzani N, Sayadi S, Mandi L. Low cost biosorbent “banana peel” for the removal of phenolic compounds from olive mill wastewater: kinetic and equilibrium studies. J Hazard Mater. 2009;166(1):117–25.

    Article  CAS  Google Scholar 

  4. Caputo AC, Scacchia F, Pelagagge PM. Disposal of by-products in olive oil industry: waste-to-energy solutions. Appl Therm Eng. 2003;23(2):197–214.

    Article  Google Scholar 

  5. Pütün AE, Uzun BB, Apaydin E, Pütün E. Bio-oil from olive oil industry wastes: pyrolysis of olive residue under different conditions. Fuel Process Technol. 2005;87(1):25–32.

    Article  CAS  Google Scholar 

  6. Şensöz S, Demiral İ, Gerçel HF. Olive bagasse (Olea europea L.) pyrolysis. Bioresour Technol. 2006;97(3):429–36.

    Article  CAS  Google Scholar 

  7. André RN, Pinto F, Franco C, Dias M, Gulyurtlu I, Matos M, et al. Fluidised bed co-gasification of coal and olive oil industry wastes. Fuel. 2005;84(12):1635–44.

    Google Scholar 

  8. Jauhiainen J, Martin-Gullon I, Conesa JA, Font R. Emissions from pyrolysis and combustion of olive oil solid waste. J Anal Appl Pyrolysis. 2005;74(1):512–7.

    Article  CAS  Google Scholar 

  9. Jauhiainen J, Conesa JA, Font R, Martın-Gullón I. Kinetics of the pyrolysis and combustion of olive oil solid waste. J Anal Appl Pyrolysis. 2004;72(1):9–15.

    Article  CAS  Google Scholar 

  10. Uzun BB, Pütün AE, Pütün E. Composition of products obtained via fast pyrolysis of olive-oil residue: effect of pyrolysis temperature. J Anal Appl Pyrolysis. 2007;79(1):147–53.

    Article  CAS  Google Scholar 

  11. Encinar J, Gonzalez J, Martínez G, Roman S. Catalytic pyrolysis of exhausted olive oil waste. J Anal Appl Pyrolysis. 2009;85(1):197–203.

    Article  CAS  Google Scholar 

  12. Taralas G, Kontominas MG. Pyrolysis of solid residues commencing from the olive oil food industry for potential hydrogen production. J Anal Appl Pyrolysis. 2006;76(1):109–16.

    Article  CAS  Google Scholar 

  13. Aboulkas A, Makayssi T, Bilali L, El harfi K, Nadifiyine M, Benchanaa M. Co-pyrolysis of oil shale and plastics: Influence of pyrolysis parameters on the product yields. Fuel Process Technol. 2012;96:209–13.

    Article  CAS  Google Scholar 

  14. Aboulkas A, Makayssi T, Bilali L, Elharfi K, Nadifiyine M, Benchanaa M. Co-pyrolysis of oil shale and high density polyethylene: Structural characterization of the oil. Fuel Process Technol. 2012;96:203–8.

    Article  CAS  Google Scholar 

  15. Yaman S. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers Manag. 2004;45(5):651–71.

    Article  CAS  Google Scholar 

  16. Aguilar MJ. Olive oil mill wastewater for soil nitrogen and carbon conservation. J Environ Manage. 2009;90(8):2845–8.

    Article  CAS  Google Scholar 

  17. Galiatsatou P, Metaxas M, Kasselouri-Rigopoulou V. Adsorption of zinc by activated carbons prepared from solvent extracted olive pulp. J Hazard Mater. 2002;91(1):187–203.

    Article  CAS  Google Scholar 

  18. Ounas A, Aboulkas A, Bacaoui A, Yaacoubi A. Pyrolysis of olive residue and sugar cane bagasse: non-isothermal thermogravimetric kinetic analysis. Bioresour Technol. 2011;102(24):11234–8.

    Article  CAS  Google Scholar 

  19. Barneto AG, Carmona JA, Alfonso JEM, Blanco JD. Kinetic models based in biomass components for the combustion and pyrolysis of sewage sludge and its compost. J Anal Appl Pyrolysis. 2009;86(1):108–14.

    Article  CAS  Google Scholar 

  20. Font R, Conesa J, Moltó J, Munoz M. Kinetics of pyrolysis and combustion of pine needles and cones. J Anal Appl Pyrolysis. 2009;85(1):276–86.

    Article  CAS  Google Scholar 

  21. Jeguirim M, Trouvé G. Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis. Bioresour Technol. 2009;100(17):4026–31.

    Article  CAS  Google Scholar 

  22. Aboulkas A, El Harfi K. Effects of acid treatments on Moroccan Tarfaya oil shale and pyrolysis of oil shale and their kerogen. J Fuel Chem Technol. 2009;37(6):659–67.

    Article  CAS  Google Scholar 

  23. Aboulkas A. Kinetic and mechanism of Tarfaya (Morocco) oil shale and LDPE mixture pyrolysis. J Mater Process Technol. 2008;206(1):16–24.

    Article  CAS  Google Scholar 

  24. Aboulkas A, El harfi K, El bouadili A, Ben Chanda M, Mokhlisse A. Pyrolysis kinetics of polypropylene: Morocco oil shale and their mixture. J Therm Anal Calorim. 2007;89(1):203–9.

    Article  CAS  Google Scholar 

  25. Aboulkas A, El Harfi K. Co-pyrolysis of olive residue with poly (vinyl chloride) using thermogravimetric analysis. J Therm Anal Calorim. 2009;95(3):1007–13.

    Article  CAS  Google Scholar 

  26. Kök M, Iscan AG. Oil shale kinetics by differential methods. J Therm Anal Calorim. 2007;88(3):657–61.

    Article  Google Scholar 

  27. Kök M, Pamir M. Non-isothermal pyrolysis and kinetics of oil shales. J Therm Anal Calorim. 1999;56(2):953–8.

    Article  Google Scholar 

  28. Ozgur E, Miller SF, Miller BG, Kok MV. Thermal analysis of co-firing of oil shale and biomass fuels. Oil Shale. 2012;29(2):190–201.

    Article  CAS  Google Scholar 

  29. Kok MV, Özgür E. Thermal analysis and kinetics of biomass samples. Fuel Process Technol. 2013;106:739–43.

    Article  CAS  Google Scholar 

  30. Janković B. On-line pyrolysis kinetics of swine manure solid samples collected from rearing farm. J Therm Anal Calorim. 2015;. doi:10.1007/s10973-015-4717-7.

    Google Scholar 

  31. Zhu X, Chen Z, Xiao B, Hu Z, Hu M, Liu C, Zhang Q. Co-pyrolysis behaviors and kinetics of sewage sludge and pine sawdust blends under non-isothermal conditions. J Therm Anal Calorim. 2014;119(3):2269–79.

    Article  CAS  Google Scholar 

  32. Garcıa-Perez M, Chaala A, Yang J, Roy C. Co-pyrolysis of sugarcane bagasse with petroleum residue, Part I: thermogravimetric analysis. Fuel. 2001;80(9):1245–58.

    Article  Google Scholar 

  33. Aboulkas A, El BA. Thermal degradation behaviors of polyethylene and polypropylene. Part I: pyrolysis kinetics and mechanisms. Energy Convers Manag. 2010;51(7):1363–9.

    Article  CAS  Google Scholar 

  34. Mu L, Chen J, Yin H, Song X, Li A, Chi X. Pyrolysis behaviors and kinetics of refining and chemicals wastewater, lignite and their blends through TGA. Bioresour Technol. 2015.

  35. Vyazovkin S. Model-free kinetics. J Therm Anal Calorim. 2006;83(1):45–51.

    Article  CAS  Google Scholar 

  36. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. Journal of Polymer Science Part C: Polymer Symposia; Wiley Online Library; 1964.

  37. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci, Part C: Polym Lett. 1966;4(5):323–8.

    CAS  Google Scholar 

  38. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 1966;70(6):487–523.

    Article  CAS  Google Scholar 

  39. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

  40. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim. 1970;2(3):301–24.

    Article  CAS  Google Scholar 

  41. Doyle C. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5(15):285–92.

    Article  CAS  Google Scholar 

  42. Vyazovkin S, Lesnikovick A. Transformation of “degree of conversion against temperature” into “degree of conversion against time” kinetic data. Russ J Phys Chem. 1988;62(1525):e7.

    Google Scholar 

  43. Vyazovkin S, Sbirrazzuoli N. Confidence intervals for the activation energy estimated by few experiments. Anal Chim Acta. 1997;355(2):175–80.

    Article  CAS  Google Scholar 

  44. Vitolo S, Petarca L, Bresci B. Treatment of olive oil industry wastes. Bioresour Technol. 1999;67(2):129–37.

    Article  CAS  Google Scholar 

  45. Wang S, Wang K, Liu Q, Gu Y, Luo Z, Cen K, et al. Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnol Adv. 2009;27(5):562–7.

    Article  CAS  Google Scholar 

  46. Chouchene A, Jeguirim M, Favre-Reguillon A, Trouvé G, Le Buzit G, Khiari B, et al. Energetic valorisation of olive mill wastewater impregnated on low cost absorbent: sawdust versus olive solid waste. Energy. 2012;39(1):74–81.

    Article  CAS  Google Scholar 

  47. Reed TB. Biomass gasification: principles and technology. Monograph. (1981).

  48. Nassar MM. Kinetic studies on thermal degradation of nonwood plants. Wood Fiber Sci. 1985;17(2):266–73.

    CAS  Google Scholar 

  49. Gai C, Dong Y, Zhang T. The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions. Bioresour Technol. 2013;127:298–305.

    Article  CAS  Google Scholar 

  50. Huang M, Li X. Thermal degradation of cellulose and cellulose esters. J Appl Polym Sci. 1998;68(2):293–304.

    Article  CAS  Google Scholar 

  51. Maddi B, Viamajala S, Varanasi S. Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass. Bioresour Technol. 2011;102(23):11018–26.

    Article  CAS  Google Scholar 

  52. Niaounakis M, Halvadakis CP. Olive processing waste management: literature review and patent survey. 2nd ed. Amsterdam: Elsevier; 2006.

    Google Scholar 

  53. Paredes C, Cegarra J, Roig A, Sánchez-Monedero M, Bernal M. Characterization of olive mill wastewater (alpechin) and its sludge for agricultural purposes. Bioresour Technol. 1999;67(2):111–5.

    Article  CAS  Google Scholar 

  54. Haykiri-Acma H, Yaman S, Kucukbayrak S. Effect of heating rate on the pyrolysis yields of rapeseed. Renew Energy. 2006;31(6):803–10.

    Article  CAS  Google Scholar 

  55. Di Blasi C. Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci. 2008;34(1):47–90.

    Article  CAS  Google Scholar 

  56. Milosavljevic I, Suuberg EM. Cellulose thermal decomposition kinetics: global mass loss kinetics. Ind Eng Chem Res. 1995;34(4):1081–91.

    Article  CAS  Google Scholar 

  57. Gundogar AS, Kok MV. Thermal characterization, combustion and kinetics of different origin crude oils. Fuel. 2014;123(1):59–65.

    Article  CAS  Google Scholar 

  58. Kok MV. Characterization of medium and heavy crude oils using thermal analysis techniques. Fuel Process Technol. 2011;92(5):1026–31.

    Article  CAS  Google Scholar 

  59. Kök MV, GUL, Kiymet G. Combustion characteristics and kinetic analysis of Turkish crude oils and their SARA fractions by DSC. J Therm Anal Calorim. 2013;114(1)269–275.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Aboulkas or K. El harfi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guida, M.Y., Bouaik, H., Tabal, A. et al. Thermochemical treatment of olive mill solid waste and olive mill wastewater. J Therm Anal Calorim 123, 1657–1666 (2016). https://doi.org/10.1007/s10973-015-5061-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5061-7

Keywords

Navigation