Skip to main content
Log in

A comparison of isothermal with nonisothermal drying kinetics of municipal sewage sludge

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal drying behavior of the municipal sewage sludge in nitrogen atmosphere was explored using a thermal analysis technique under isothermal and nonisothermal drying conditions. The Midilli model, \( {\text{MR}} = \exp ( - kt^{\text{n}} ) + bt \), was the best suitable for predicting both the isothermal and nonisothermal drying behavior of the sewage sludge with the highest R 2. The isothermal drying apparent activation energies of the first falling rate period and the second falling rate period were 18.03 and 11.87 kJ mol−1, respectively. The nonisothermal drying apparent activation energies of sewage sludge were from 33.61 to 47.37 kJ mol−1 in the first falling rate period and from 20.47 to 33.43 kJ mol−1 in the second falling rate period, respectively. In two falling rate periods, the dominant mechanism functions for the isothermal drying were identical, \( - \ln (1 - \alpha ) \). The dominant mechanism functions for the first falling rate period and the second falling rate period in the nonisothermal drying were described by \( [ - \ln (1 - \alpha )]^{1/2} \) and \( [ - \ln (1 - \alpha )]^{1/3} \), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tyagi VK, Lo S-L. Sludge: a waste or renewable source for energy and resources recovery? Renew Sustain Energy Rev. 2013;25:708–28. doi:10.1016/j.rser.2013.05.029.

    Article  CAS  Google Scholar 

  2. Mills N, Pearce P, Farrow J, Thorpe RB, Kirkby NF. Environmental and economic life cycle assessment of current and future sewage sludge to energy technologies. Waste Manag. 2014;34(1):185–95. doi:10.1016/j.wasman.2013.08.024.

    Article  CAS  Google Scholar 

  3. Tuncal T, Uslu O. A review of dehydration of various industrial sludges. Drying Technol. 2014;32(14):1642–54. doi:10.1080/07373937.2014.909846.

    Article  CAS  Google Scholar 

  4. Kelessidis A, Stasinakis AS. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manag. 2012;32(6):1186–95. doi:10.1016/j.wasman.2012.01.012.

    Article  CAS  Google Scholar 

  5. Wahidunnabi AK, Eskicioglu C. High pressure homogenization and two-phased anaerobic digestion for enhanced biogas conversion from municipal waste sludge. Water Res. 2014;66:430–46. doi:10.1016/j.watres.2014.08.045.

    Article  CAS  Google Scholar 

  6. Hong J, Xu C, Tan X, Chen W. Life cycle assessment of sewage sludge co-incineration in a coal-based power station. Waste Manag. 2013;33(9):1843–52. doi:10.1016/j.wasman.2013.05.007.

    Article  Google Scholar 

  7. Jin L, Zhang G, Tian H. Current state of sewage treatment in China. Water Res. 2014;66:85–98. doi:10.1016/j.watres.2014.08.014.

    Article  CAS  Google Scholar 

  8. Zhu F, Jiang H, Zhang Z, Zhao L, Wang J, Hu J, et al. Research on drying effect of different additives on sewage sludge. Proced Environ Sci. 2012;16:357–62. doi:10.1016/j.proenv.2012.10.051.

    Article  CAS  Google Scholar 

  9. Zhu F, Zhang Z, Jiang H, Zhao L. The study of sewage sludge thermo-drying efficiency. Proced Environ Sci. 2012;16:363–7. doi:10.1016/j.proenv.2012.10.052.

    Article  CAS  Google Scholar 

  10. Bennamoun L, Arlabosse P, Léonard A. Review on fundamental aspect of application of drying process to wastewater sludge. Renew Sustain Energy Rev. 2013;28:29–43. doi:10.1016/j.rser.2013.07.043.

    Article  Google Scholar 

  11. Chen G, Lock Yue P, Mujumdar AS. Sludge dewatering and drying. Drying Technol. 2006;20(4–5):883–916. doi:10.1081/drt-120003768.

    Google Scholar 

  12. Cieślik BM, Namieśnik J, Konieczka P. Review of sewage sludge management: standards, regulations and analytical methods. J Clean Prod. 2015;90:1–15. doi:10.1016/j.jclepro.2014.11.031.

    Article  CAS  Google Scholar 

  13. Chen D, Zhang Y, Zhu X. Drying kinetics of rice straw under isothermal and nonisothermal conditions: a comparative study by thermogravimetric analysis. Energy Fuels. 2012;26(7):4189–94.

    Article  CAS  Google Scholar 

  14. Font R, Gomez-Rico MF, Fullana A. Skin effect in the heat and mass transfer model for sewage sludge drying. Sep Purif Technol. 2011;77(1):146–61. doi:10.1016/j.seppur.2010.12.001.

    Article  CAS  Google Scholar 

  15. Leonard A, Vandevenne P, Salmon T, Marchot P, Crine M. Wastewater sludge convective drying: influence of sludge origin. Environ Technol. 2004;25(9):1051–7. doi:10.1080/09593330.2004.9619398.

    Article  CAS  Google Scholar 

  16. Celma AR, Cuadros F, López-Rodríguez F. Convective drying characteristics of sludge from treatment plants in tomato processing industries. Food Bioprod Process. 2012;90(2):224–34. doi:10.1016/j.fbp.2011.04.003.

    Article  Google Scholar 

  17. Léonard A, Blacher S, Marchot P, Pirard JP, Crine M. Convective drying of wastewater sludges: influence of air temperature, superficial velocity, and humidity on the kinetics. Drying Technol. 2005;23(8):1667–79. doi:10.1081/drt-200065082.

    Article  CAS  Google Scholar 

  18. Cai J, Liu R. Research on water evaporation in the process of biomass pyrolysis. Energy Fuels. 2007;21(6):3695–7. doi:10.1021/ef700442n.

    Article  CAS  Google Scholar 

  19. Chen D, Zheng Y, Zhu X. Determination of effective moisture diffusivity and drying kinetics for poplar sawdust by thermogravimetric analysis under isothermal condition. Bioresour Technol. 2012;107:451–5. doi:10.1016/j.biortech.2011.12.032.

    Article  CAS  Google Scholar 

  20. Joardder MUH, Karim A, Kumar C, Brown RJ. Determination of effective moisture diffusivity of banana using thermogravimetric analysis. Proced Eng. 2014;90:538–43. doi:10.1016/j.proeng.2014.11.769.

    Article  Google Scholar 

  21. Madhava M, Rao PS, Goswami TK. Drying kinetics of paddy using thermogravimetric analysis. Drying Technol. 2001;19(6):1201–10. doi:10.1081/drt-100104815.

    Article  CAS  Google Scholar 

  22. Luo F, Dong B, Dai L, He Q, Dai X. Change of thermal drying characteristics for dewatered sewage sludge based on anaerobic digestion. J Therm Anal Calorim. 2012;114(1):307–12. doi:10.1007/s10973-012-2879-0.

    Article  CAS  Google Scholar 

  23. Qian J, Yoon YW, Youn PS, Kim JH, Choi DS, Choi J-H, et al. Drying characteristics of sewage sludge. Korean J Chem Eng. 2011;28(7):1636–40. doi:10.1007/s11814-011-0009-5.

    Article  CAS  Google Scholar 

  24. Chen D-Y, Zhang D, Zhu X-F. Heat/mass transfer characteristics and nonisothermal drying kinetics at the first stage of biomass pyrolysis. J Therm Anal Calorim. 2012;109(2):847–54.

    Article  CAS  Google Scholar 

  25. Chen D, Zheng Y, Zhu X. In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: kinetic analysis for the drying and devolatilization stages. Bioresour Technol. 2013;131:40–6. doi:10.1016/j.biortech.2012.12.136.

    Article  CAS  Google Scholar 

  26. Vyazovkin SV, Lesnikovich AI, Goryachko VI. A method of comparing kinetic curves obtained under isothermal and nonisothermal conditions. Thermochim Acta. 1991;177:259–64. doi:10.1016/0040-6031(91)80102-O.

    Article  CAS  Google Scholar 

  27. Cai J, Chen S. Determination of drying kinetics for biomass by thermogravimetric analysis under nonisothermal condition. Drying Technol. 2008;26(12):1464–8. doi:10.1080/07373930802412116.

    Article  Google Scholar 

  28. Fornasini P. The uncertainty in physical measurements—an introduction to data analysis in the physics laboratory. New York: Springer; 2008.

    Google Scholar 

  29. Pusat S, Akkoyunlu MT, Erdem HH, Dağdaş A. Drying kinetics of coarse lignite particles in a fixed bed. Fuel Process Technol. 2015;130:208–13. doi:10.1016/j.fuproc.2014.10.023.

    Article  CAS  Google Scholar 

  30. Doymaz İ. Effect of pre-treatments using potassium metabisulphide and alkaline Ethyl Oleate on the drying kinetics of Apricots. Biosyst Eng. 2004;89(3):281–7. doi:10.1016/j.biosystemseng.2004.07.009.

    Article  Google Scholar 

  31. Biswas S, Mohanty P, Sharma DK. Studies on synergism in the cracking and co-cracking of Jatropha oil, vacuum residue and high density polyethylene: kinetic analysis. Fuel Process Technol. 2013;106:673–83. doi:10.1016/j.fuproc.2012.10.001.

    Article  CAS  Google Scholar 

  32. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404(1–2):163–76. doi:10.1016/s0040-6031(03)00144-8.

    Article  CAS  Google Scholar 

  33. Criado JM. On the theoretical basis of the hancock and sharp “ln.ln method” of kinetic analysis of isothermal data. Thermochim Acta. 1980;39(3):361–2. doi:10.1016/0040-6031(80)87092-4.

    Article  CAS  Google Scholar 

  34. Chen MQ, Chen YX, Jia L, Zhang YG, Li QH, Meng AH. Kinetic analysis on the drying of high moisture MSW. Heat Transf Asian Res. 2009;38(4):216–22.

    Article  Google Scholar 

  35. Erceg M, Kovačić T, Klarić I. Poly(3-hydroxybutyrate) nanocomposites: isothermal degradation and kinetic analysis. Thermochim Acta. 2009;485(1–2):26–32. doi:10.1016/j.tca.2008.12.002.

    Article  CAS  Google Scholar 

  36. Liu HM, Chen MQ, Han ZL, Fu BA. Isothermal kinetics based on two-periods scheme for co-drying of biomass and lignite. Thermochim Acta. 2013;573:25–31. doi:10.1016/j.tca.2013.08.030.

    Article  CAS  Google Scholar 

  37. Kok MV, Özgür E. Thermal analysis and kinetics of biomass samples. Fuel Process Technol. 2013;106:739–43. doi:10.1016/j.fuproc.2012.10.010.

    Article  CAS  Google Scholar 

  38. Ma Z, Chen D, Gu J, Bao B, Zhang Q. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods. Energy Convers Manag. 2015;89:251–9. doi:10.1016/j.enconman.2014.09.074.

    Article  CAS  Google Scholar 

  39. Vlaev LT, Markovska IG, Lyubchev LA. Non-isothermal kinetics of pyrolysis of rice husk. Thermochim Acta. 2003;406(1–2):1–7. doi:10.1016/S0040-6031(03)00222-3.

    Article  CAS  Google Scholar 

  40. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19. doi:10.1016/j.tca.2011.03.034.

    Article  CAS  Google Scholar 

  41. Salmas CE, Tsetsekou AH, Hatzilyberis KS, Androutsopoulos GP. Evolution lignite mesopore structure during drying. Effect of temperature and heating time. Drying Technol. 2001;19(1):35–64. doi:10.1081/drt-100001351.

    Article  CAS  Google Scholar 

  42. Belhamri A. Characterization of the first falling rate period during drying of a porous material. Drying Technol. 2003;21(7):1235–52. doi:10.1081/drt-120023178.

    Article  Google Scholar 

  43. Choudhury D, Sahu JK, Sharma GD. Moisture sorption isotherms, heat of sorption and properties of sorbed water of raw bamboo (Dendrocalamus longispathus) shoots. Ind Crops Prod. 2011;33(1):211–6. doi:10.1016/j.indcrop.2010.10.014.

    Article  Google Scholar 

  44. Lasagabaster A, Abad MJ, Barral L, Ares A. FTIR study on the nature of water sorbed in polypropylene (PP)/ethylene alcohol vinyl (EVOH) films. Eur Polymer J. 2006;42(11):3121–32. doi:10.1016/j.eurpolymj.2006.03.029.

    Article  CAS  Google Scholar 

  45. Phanphanich M, Mani S. Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour Technol. 2011;102(2):1246–53.

    Article  CAS  Google Scholar 

  46. Feng H, Tang J, John Dixon-Warren S. Determination of moisture diffusivity of red delicious apple tissues by thermogravimetric analysis. Drying Technol. 2000;18(6):1183–99. doi:10.1080/07373930008917771.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under No. 51376017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Q. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X.Y., Chen, M.Q. A comparison of isothermal with nonisothermal drying kinetics of municipal sewage sludge. J Therm Anal Calorim 123, 665–673 (2016). https://doi.org/10.1007/s10973-015-4933-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4933-1

Keywords

Navigation