Skip to main content
Log in

Study of nonisothermal reduction of iron ore-coal/char composite pellet

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Cold-bonded composite pellets, consisting of iron ore fines and fines of noncoking coal or char, were prepared by steam curing at high pressure in an autoclave employing inorganic binders. Dry compressive strength ranged from 200 to 1000 N for different pellets. The pellets were heated from room temperature to 1273 K under flowing argon at two heating rates. Rates of evolution of product gases were determined from gas Chromatographie analysis, and the temperature of the sample was monitored by thermocouple as a function of time during heating. Degree of reduction, volume change, and compressive strength of the pellets upon reduction were measured subsequently. Degree of reduction ranged from 46 to 99 pct. Nonisothermal devolatilization of coal by this procedure also was carried out for comparison. It has been shown that a significant quantity (10 to 20 pct of the pellet weight) of extraneous H2O and CO2 was retained by dried pellets. This accounted for the generation of additional quantities of H2 and CO during heating. Carbon was the major reductant, but reduction by H2 also was significant. Ore-coal and ore-char composites exhibited a comparable degree of reduction. However, the former showed superior postreduction strength due to a smaller amount of swelling upon reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.F. Gransden, D.A. Reeve, J.H. Walsh, and J.E. Rehder:Can. Min. Metall. Bull., 1978, vol. 71, pp. 153–59.

    Google Scholar 

  2. F.T. Kaiser, L.L. French, and H.G. Rachner:Giesserei, 1980, vol. 67, pp. 200–06.

    CAS  Google Scholar 

  3. P.V. Duranet al.:Proc. Conf. 38th Annual Congress ABM, Sao Paulo, Brazil, 1983, vol. 1, p. 203 (Met. A: 8312 42-1587).

    Google Scholar 

  4. M.A. Goksel, T.A. Schott, and F.T. Kaiser:Proc. 4th Int. Symp. on Agglomeration, Toronto, 1985, pp. 401–08.

  5. F.J. Weiss, M.A. Goksel, and F.T. Kaiser:Iron Steel Eng., 1986, vol. 63, pp. 34–40.

    CAS  Google Scholar 

  6. H. Xi-Lun:Iron Steel (China), 1979, vol. 14, p. 45 (Met. A: 8002 42-0157).

    Google Scholar 

  7. N. Shivaramakrishna, B.B. Agarwal, A.K. Ray, K.K. Prasad, P.K. Bandopadhyay, and S.K. Gupta:Trans. Indian Inst. Met., 1990, vol. 43, pp. 95–101.

    CAS  Google Scholar 

  8. V.E. Lotosh, V.A. Naidenov, and A.A. Chesnokov:Metallurgy, 1987, vol. 12, p. 8 (Met. A: 8804 42-0707).

    Google Scholar 

  9. M.A. Goksel:Agglomeration 77, K.V.S. Sastry, ed., TMS-AIME, New York, NY, 1977, vol. 2, p. 877.

    Google Scholar 

  10. K. Otsuka and D. Kunii:J. Chem. Eng. Jpn., 1969, vol. 2, pp. 46–50.

    CAS  Google Scholar 

  11. Y.K. Rao:Metall. Trans., 1971, vol. 2, pp. 1439–47.

    CAS  Google Scholar 

  12. R.J. Fruehan:Metall. Trans. B, 1977, vol. 8B, pp. 279–86.

    CAS  Google Scholar 

  13. M.C. Abraham and A. Ghosh:Ironmaking and Steelmaking, 1979, vol. 6, pp. 14–23.

    CAS  Google Scholar 

  14. D. Bandyopadhyay: Ph.D. Thesis, Indian Institut Technolo. Kanpur, India, 1989.

    Google Scholar 

  15. V.A. Kiselev, L.I. Permyakova, L.J. Leontev, V.A. Kobelov, and S.V. Sharvin:Izv. Akad Nauk SSSR, Met., 1982, vol. 6, p. 33 (Met. A: 8307 42-0866).

    Google Scholar 

  16. C.E. Seaton, J.S. Foster, and J. Velaseo:Trans. Iron Steel Inst., 1983, vol. 23, pp. 490–96.

    CAS  Google Scholar 

  17. Ov. Hatarasen and L. Dian:Metallurgia, 1973, vol. 25, p. 7 (Met. A: 7502 42-0077).

    Google Scholar 

  18. A.V. Sidorskii, Yu. L. Dobromirov, and V.V. Leshchenko:Izv. Vyssh. Uchebn. Zaved. Chem. Metall., 1987, vol. 9, p. 126 (Met. A: 8802 42-0326).

    Google Scholar 

  19. C.Y. Wen and S. Dutta: inCoal Conversion Technology, C.Y. Wen and E. Stanley Lee, eds., Addison-Wesley Publishing Co., Inc., Reading, MA, 1979, p. 57.

    Google Scholar 

  20. L.D. Smooth and P.J. Smith:Coal Combustion and Gasification, Planum Press, New York, NY, 1985, p. 37.

    Google Scholar 

  21. S. Sarkar: inFrontiers in Applied Chemistry, A.K. Biswas, ed., Narosa Publishing House, New Delhi, 1989, p. 119.

    Google Scholar 

  22. R. Cypres and C. Soudan-Moinet:Fuel, 1980, vol. 59, pp. 48–54.

    Article  CAS  Google Scholar 

  23. R. Cypres and C. Soudan-Moinet:Fuel, 1981, vol. 60, pp. 33–39.

    Article  CAS  Google Scholar 

  24. C. Bryk and W.K. Lu:Ironmaking and Steelmaking, 1986, vol. 13, pp. 70–75.

    CAS  Google Scholar 

  25. H.S. Ray and P.A. Sewell:Proc. Int. Conf. on Advances in Chemical Metallurgy, BARC, Bombay, 1979, vol. II, p. 43/1/1.

    Google Scholar 

  26. S. Mookherjee, H.S. Ray, and A. Mukherjee:Thermochim. Acta, 1985, vol. 95, pp. 247–56.

    Article  CAS  Google Scholar 

  27. S. Prakash and H.S. Ray:Thermochim. Acta, 1987, vol. III, pp. 143–66.

    Article  Google Scholar 

  28. S.K. Dutta: Ph.D. Thesis, Indian Institute of Technol Kanpur, India, 1991.

    Google Scholar 

  29. J.L. Johnson:Kinetics of Coal Gasification, John Wiley & Sons, New York, NY, 1979, p. 19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, Department of Metallurgical Engineering, Indian Institute of Technology, Kanpur, India

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutta, S.K., Ghosh, A. Study of nonisothermal reduction of iron ore-coal/char composite pellet. Metall Mater Trans B 25, 15–26 (1994). https://doi.org/10.1007/BF02663174

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02663174

Keywords

Navigation