Skip to main content
Log in

Design and functionality of a high-sensitivity bomb calorimeter specialized for reactive metallic foils

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

We have designed and built a unique non-adiabatic bomb calorimeter to measure heat generated from intermetallic formation reactions and the subsequent partial combustion of nanocomposite metallic foils. Reactions are initiated with a low-energy electrical spark and can be performed in 1 atm of air, oxygen, nitrogen, or argon, in order to investigate reaction and burning characteristics in various environments. The bomb was designed to hold the foil samples with minimal thermal contact in order to mitigate heat losses and maximize surface area available for oxidation and nitridation. Samples are limited to the milligram range, and are much less energetic than an equivalent mass of organic material such as benzoic acid. Therefore, to maximize instrument sensitivity, heat capacity was minimized by designing the bomb to be as small as possible and by using low-viscosity silicone oil for the bath instead of water. The calorimeter has an energy equivalent of ε (calor) = 279 ± 6 J K−1, allowing us to measure heat generation on the order of tens of Joules. Calibrations were performed in argon using Al:Ni nanocomposite foils with well-known heats of reaction, which were measured using differential scanning calorimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dreizin EL. Metal-based reactive nanomaterials. Prog Energy Combust Sci. 2009;35:141–67.

    Article  CAS  Google Scholar 

  2. Rogachev AS. Exothermic reaction waves in multilayer nanofilms. Russ Chem Rev. 2008;77:21–37.

    Article  CAS  Google Scholar 

  3. Weihs TP. Fabrication and characterization of reactive multilayer films and foils. In: Barmak K, Coffey KR, editors. Metallic films for electronic, optical and magnetic applications. Swaston: Woodhead; 2014. p. 160–243.

    Chapter  Google Scholar 

  4. Adams DP. Reactive multilayers fabricated by vapor deposition: a critical review. Thin Solid Films. 2015;576:98–128.

    Article  CAS  Google Scholar 

  5. Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46:1–184.

    Article  CAS  Google Scholar 

  6. Stover AK, Krywopusk NM, Fritz GM, Barron SC, Gibbins JD, Weihs TP. An analysis of the microstructure and properties of cold-rolled Ni:Al laminate foils. J Mater Sci. 2013;48:5917–29.

    Article  CAS  Google Scholar 

  7. Weihs TP. Self-propagating reactions in multilayer materials. In: Glocker D, Shah S, editors. Handb. Thin Film Process Technol. Bristol, UK: IOP Publishing Ltd; 1997.

  8. Overdeep KR, Livi KJT, Allen DJ, Glumac NG, Weihs TP. Using magnesium to maximize heat generated by reactive Al/Zr nanolaminates. Combust Flame 2015;162:2855–64.

  9. Korchagina EN, Ermakova EV, Belyakov VI. A comparative analysis of the technical and metrological characteristics of bomb calorimeters used in Russia. Meas Tech. 2011;54:186–93.

    Article  Google Scholar 

  10. Nagano Y, Sugimoto T. Micro-combustion calorimetry aiming at 1 mg samples. J Therm Anal Calorim. 1999;57:867–74.

    Article  CAS  Google Scholar 

  11. McEwan WS, Anderson CM. Miniature bomb calorimeter for the determination of heats of combustion of samples of the order of 50 mg mass. Rev Sci Instrum. 1955;26:280.

    Article  CAS  Google Scholar 

  12. Ribeiro da Silva MAV, Pilcher G, Santos LMNBF, Lima LMSS. Calibration and test of an aneroid mini-bomb combustion calorimeter. J Chem Thermodyn. 2007;39:689–97.

    Article  CAS  Google Scholar 

  13. Mentado J, Mendoza E. Calibration and testing of an isoperibolic micro-combustion calorimeter developed to measure the enthalpy of combustion of organic compounds containing C, H, O and N. J Chem Thermodyn. 2013;59:209–13.

    Article  CAS  Google Scholar 

  14. Rojas-Aguilar A. An isoperibol micro-bomb combustion calorimeter for measurement of the enthalpy of combustion. Application to the study of fullerene C60. J Chem Thermodyn. 2002;34:1729–43.

    Article  CAS  Google Scholar 

  15. Sakiyama M, Kiyobayashi T. Micro-bomb combustion calorimeter equipped with an electric heater for aiding complete combustion. J Chem Thermodyn. 2000;32:269–79.

    Article  CAS  Google Scholar 

  16. Camarillo EA, Flores H. Construction, calibration and testing of a micro-combustion calorimeter. J Chem Thermodyn. 2006;38:1269–73.

    Article  CAS  Google Scholar 

  17. Diogo HP, Minas ME. A micro-combustion calorimeter suitable for samples of mass 10 mg to 50 mg. Application to solid compounds of C, H, and O, and of C, H, O, and N. J Chem Thermodyn. 1995;27:197–206.

  18. Månsson M. A, 4.5 cm3 bomb combustion calorimeter and an ampoule technique for 5 to 10 mg samples with vapour pressures below approximately 3 kPa (20 Torr). J Chem Thermodyn. 1973;5:721–32.

    Article  Google Scholar 

  19. Metzger RM, Kuo CS, Arafat ES. A semi-micro rotating-bomb combustion calorimeter. J Chem Thermodyn. 1983;15:841–51.

    Article  CAS  Google Scholar 

  20. Parker W, Steele WV, Stirling W. A high-precision aneroid static-born combustion calorimeter for samples about 20 mg. The standard enthalpy formation of bicylco[3.3.3]undecane. J Chem Thermodyn. 1975;7:795–802.

    Article  CAS  Google Scholar 

  21. Byrne PG, Dempsey T, Marchandise H, Vandendriessche S. Report EUR 14439 E.N. Determination of the gross calorific value of natural gas: results of a BCR intercomparison. Brussels: Commission on the European Communities; 1993.

  22. Korchagina EN. Thermal measurements—present state and trends in the development of combustion calorimetry. Meas Tech. 1999;41:49–54.

    Google Scholar 

  23. Nathani H, Wang J, Weihs TP. Long-term stability of nanostructured systems with negative heats of mixing. J Appl Phys. 2007;101:104315.

    Article  Google Scholar 

  24. Washburn EW. Standard states for bomb calorimetry. Bur Stand J Res. 1933;10:525–58.

    Article  CAS  Google Scholar 

  25. Wen J. Heat capacities of polymers. In: Mark JE, editor. Physical properties of polymers handbook. 2nd ed. Berlin: Springer; 2007.

    Google Scholar 

  26. Wagner W, Pruß A. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data. 2002;31:387.

    Article  CAS  Google Scholar 

  27. Hajiev SN. A highly sensitive dynamic bomb calorimeter. Rev Sci Instrum. 1970;41:68.

    Article  Google Scholar 

  28. Recknagel RO, Glende EA, Dolak JA, Waller RL. Mechanisms of carbon tetrachloride toxicity. Pharmacol Ther. 1989;43:139–54.

    Article  CAS  Google Scholar 

  29. Benjamin D. In: ASM Handbook Committee, editor. Metals handbook volume 2: properties and selection: nonferrous alloys and pure metals. 9th ed. Metals Park, OH: American Society for Metals; 1980. p. 815.

  30. Benjamin D. In: Committee AH, editor. Metals handbook volume 3: properties and selection: stainless steels, tool materials and special-purpose metals. 9th ed. Metals Park, OH: American Society for Metals; 1980. p. 34–5.

  31. Schweitzer PA. Corrosion resistance tables. 3rd ed. New York, NY: Marcel Dekker; 1991.

    Google Scholar 

  32. Dickinson HJ. Combustion bomb calorimetry and the heats of combustion of cane sugar, benzoic acid, and naphthalene. Bull Bur Stand. 1914;11:244.

    Google Scholar 

  33. Ma E, Thompson CV, Clevenger LA, Tu KN. Self-propagating explosive reactions in Al/Ni multilayer thin films. Appl Phys Lett. 1990;57:1262–4.

    Article  CAS  Google Scholar 

  34. Wang J, Besnoin E, Knio OM, Weihs TP. Effects of physical properties of components on reactive nanolayer joining. J Appl Phys. 2005;97:114307.

    Article  Google Scholar 

  35. Kuk SW, Ryu HJ, Yu J. Effects of the Al/Ni ratio on the reactions in the compression-bonded Ni-sputtered Al foil multilayer. J Alloys Compd. 2013;589:455–61.

    Article  Google Scholar 

  36. Fritz GM. Thesis. Johns Hopkins University; 2011.

  37. Knepper R, Snyder MR, Fritz G, Fisher K, Knio OM, Weihs TP. Effect of varying bilayer spacing distribution on reaction heat and velocity in reactive Al/Ni multilayers. J Appl Phys. 2009;105:083504.

    Article  Google Scholar 

  38. Gavens AJ, Van Heerden D, Mann AB, Reiss ME, Weihs TP. Effect of intermixing on self-propagating exothermic reactions in Al/Ni nanolaminate foils. J Appl Phys. 2000;87:1255.

    Article  CAS  Google Scholar 

  39. Swaminathan P, Grapes MD, Woll K, Barron SC, LaVan DA, Weihs TP. Studying exothermic reactions in the Ni–Al system at rapid heating rates using a nanocalorimeter. J Appl Phys. 2013;113:143509.

    Article  Google Scholar 

  40. Santos LMNBF, Silva MT, Schröder B, Gomes L. Labtermo: methodologies for the calculation of the corrected temperature rise in isoperibol calorimetry. J Therm Anal Calorim. 2007;89:175–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the help of Francis Cook and Mike Franckowiak for their excellent work in machining the bomb calorimeters and discussions with them about the designs. This work was funded by the Defense Threat Reduction Agency (DTRA), Grant HDTRAA1-11-1-0063. Thanks also go to Travis Schmauss and Atman Panigrahi, for their work in operating the calorimeter, including the calibration data used to calculate the presented calorimeter constant. The guidance of Michael Grapes in writing the analysis software is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle R. Overdeep.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Overdeep, K.R., Weihs, T.P. Design and functionality of a high-sensitivity bomb calorimeter specialized for reactive metallic foils. J Therm Anal Calorim 122, 787–794 (2015). https://doi.org/10.1007/s10973-015-4805-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4805-8

Keywords

Navigation