Skip to main content
Log in

The removal of template from SBA-15 samples synthesized from different silica sources

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Mesoporous SBA-15 was synthesized from tetraethyl orthosilicate and sodium silicate as pure silica sources and waste gold mine treatment sludge as an alternative silica source. The synthesis of SBA-15 samples were carried out by the hydrothermal method using the silica source and Pluronic P123 triblock copolymer as the structural template in an acidic medium. The synthesized materials were characterized by X-ray diffraction and nitrogen adsorption–desorption analysis. Thermal decomposition behaviors and kinetics of template from as-synthesized SBA-15 samples derived from different silica sources were investigated by thermogravimetry. The activation energies to decomposition of the template from as-synthesized SBA-15 samples were determined by Vyazovkin model-free method. The decomposition behavior of SBA-15 synthesized from waste was similar to SBA-15 synthesized from tetraethyl orthosilicate. Thermogravimetry coupled with Fourier transform infrared spectrometry analysis was applied for analysis of gaseous products evolved during thermal decomposition of synthesized samples. H2O, CO2, CH2, and CH3 were the main gaseous products released.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang XQ, Ge HL, Jin HX, Cui YJ. Influence of Fe on the thermal stability and catalysis of SBA-15 mesoporous molecular sieves. Microporous Mesoporous Mater. 2005;86:335–40.

    Article  CAS  Google Scholar 

  2. Dhar GM, Kumaran GM, Kumar M, Rawat KS, Sharma LD, Raju BD, Rama Rao KS. Physico-chemical characterization and catalysis on SBA-15 supported molybdenum hydrotreating catalysts. Catal Today. 2005;99:309–14.

    Article  CAS  Google Scholar 

  3. Chandrasekar G, Son WJ, Ahn WS. Synthesis of mesoporous materials SBA-15 and CMK-3 from fly ash and their application for CO2 adsorption. J Porous Mater. 2009;16:545–51.

    Article  CAS  Google Scholar 

  4. Bhagiyalakshmi M, Yun LJ, Anuradha R, Jang HT. Synthesis of chloropropylamine grafted mesoporous MCM-41, MCM-48 and SBA-15 from rice husk ash: their application to CO2 chemisorption. J Porous Mater. 2010;17:475–84.

    Article  CAS  Google Scholar 

  5. Barbosa MN, Araujo AS, Galvão PFCL, Silva FBE, Santos GDA, Luz EG, Fernandes VJ Jr. Carbon dioxide adsorption over DIPA functionalized MCM-41 and SBA-15 molecular sieves. J Therm Anal Calorim. 2011;106:779–82.

    Article  CAS  Google Scholar 

  6. Hernández-Morales V, Nava R, Acosta-Silva YJ, Macías-Sánchez SA, Pérez-Bueno JJ, Pawelec B. Adsorption of lead (II) on SBA-15 mesoporous molecular sieve functionalized with–NH2 groups. Microporous Mesoporous Mater. 2012;160:133–42.

    Article  Google Scholar 

  7. Da’na E, Sayari A. Adsorption of heavy metals on amine-functionalized SBA-15 prepared by co-condensation: applications to real water samples. Desalination. 2012;285:62–7.

    Article  Google Scholar 

  8. Janus R, Natkański P, Wach A, Drozdek M, Piwowarska Z, Cool P, Kuśtrowski P. Thermal transformation of polyacrylonitrile deposited on SBA-15 type silica. J Therm Anal Calorim. 2012;110:119–25.

    Article  CAS  Google Scholar 

  9. Yu H, Zhai QZ. Mesoporous SBA-15 molecular sieve as a carrier for controlled release of nimodipine. Microporous Mesoporous Mater. 2009;123:298–305.

    Article  CAS  Google Scholar 

  10. Lei J, Fan J, Yu CZ, Zhang LY, Jiang SY, Tu B, Zhao DY. Immobilization of enzymes in mesoporous materials: controlling the entrance to nanospace. Microporous Mesoporous Mater. 2004;73:121–8.

    Article  CAS  Google Scholar 

  11. Vinu A, Murugesan V, Hartmann M. Adsorption of lysozyme over mesoporous molecular sieves MCM-41 and SBA-15: influence of pH and aluminum incorporation. J Phys Chem B. 2004;108:7323–30.

    Article  CAS  Google Scholar 

  12. Li LL, Sun H, Fang CJ, Xu J, Jin JY, Yan CH. Optical sensors based on functionalized mesoporous silica SBA-15 for the detection of multianalytes (H+ and Cu2+) in water. J Mater Chem. 2007;17:4492–8.

    Article  CAS  Google Scholar 

  13. Liu ZC, Chen HR, Huang WM, Gu JL, Bu WB, Hua ZL, Shi JL. Synthesis of a new SnO2/mesoporous silica composite with room-temperature photoluminescence. Microporous Mesoporous Mater. 2006;89:270–5.

    Article  CAS  Google Scholar 

  14. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc. 1998;120:6024–36.

    Article  CAS  Google Scholar 

  15. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science. 1998;279:548.

    Article  CAS  Google Scholar 

  16. Barczak M, Oszust-Cieniuch M, Borowski P, Fekner Z, Zieba E. SBA-15 silicas containing sucrose, chemical, structural, and thermal studies. J Therm Anal Calorim. 2012;108:1093–9.

    Article  CAS  Google Scholar 

  17. Karandikar P, Patil KR, Mitra A, Kakade B, Chandwadkar AJ. Synthesis and characterization of mesoporous carbon through inexpensive mesoporous silica as template. Micropor Mesoporous Mater. 2007;98:189.

    Article  CAS  Google Scholar 

  18. Chandrasekar G, You KS, Ahn JW, Ahn WS. Synthesis of hexagonal and cubic mesoporous silica using power plant bottom ash. Micropor Mesoporous Mater. 2008;111:455–62.

    Article  CAS  Google Scholar 

  19. Yilmaz Sari M, Piskin S. Evaluation of novel synthesis of SBA-15 from gold mine tailings slurry by experimental design. J Taiwan Inst Chem E. 2015;46:176–82.

  20. Kleitz F, Schmidt W, Schüth F. Calcination behavior of different surfactant-templated mesostructured silica materials. Microporous Mesoporous Mater. 2003;65:1–29.

    Article  CAS  Google Scholar 

  21. Bérubé F, Kaliaguine S. Calcination and thermal degradation mechanisms of triblock copolymer template in SBA-15 materials. Microporous Mesoporous Mater. 2008;115:469–79.

    Article  Google Scholar 

  22. Keene MTJ, Denoyel R, Llewellyn PL. Ozone treatment for the removal of surfactant to form MCM-41 type materials. Chem Commun. 1998;20:2203–4.

    Article  Google Scholar 

  23. Tian B, Liu X, Yu C, Gao F, Luo Q, Xie S, Tu B, Zhao D. Microwave assisted template removal of siliceous porous materials. Chem Commun. 2002;11:1186–7.

    Article  Google Scholar 

  24. Mokaya R, Jones W. The influence of template extraction on the properties of primary amine templated aluminosilicate mesoporous molecular sieves. J Mater Chem. 1998;8:2819–26.

    Article  CAS  Google Scholar 

  25. Kurk M, Jaroniec M, Ko HC, Ryoo R. Characterization of the porous structure of SBA-15. Chem Mater. 2000;12:1961–8.

    Article  Google Scholar 

  26. Hitz S, Prins R. Influence of template extraction on structure, activity, and stability of MCM-41 catalysts. J Catal. 1997;168:194–206.

    Article  CAS  Google Scholar 

  27. Van Grieken R, Calleja G, Stucky GD, Melero JA, Garcia RA, Iglesias J. Supercritical fluid extraction of a nonionic surfactant template from SBA-15 materials and consequences on the porous structure. Langmuir. 2003;19:3966–73.

    Article  Google Scholar 

  28. Kosuge K, Sato T, Kikukawa N, Takemori M. Morphological control of rod- and fiberlike SBA-15 type mesoporous silica using water-soluble sodium silicate. Chem Mater. 2004;16:899–905.

    Article  CAS  Google Scholar 

  29. Yilmaz Sari M, Piskin S. Extraction of silicon dioxide from tailings slurry of gold mine treatment plant by alkali fusion technique. IJCEBS. 2013;1:211–3.

  30. Coutinho AC, Quintella SA, Araujo AS, Barros JMF, Pedrosa AMG, Fernandes VJ Jr, Souza MJB. Thermogravimetry applied to characterization of SBA-15 nanostructured material. J Therm Anal Calorim. 2007;87:457–61.

    Article  CAS  Google Scholar 

  31. Vyazovkin S, Wright CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340:53–68.

    Article  Google Scholar 

  32. Vyazovkin S, Goriyachko V. Potentialities of software for kinetic processing of thermoanalytical data by the isoconversion method. Thermochim Acta. 1992;194:221.

    Article  CAS  Google Scholar 

  33. Vyazovkin S, Lesnikovick AI. Conversion of kinetic data from the temperature-dependent degree of conversion to the time dependent degree of conversion. Russ J Phys Chem. 1988;62:2949–53.

    CAS  Google Scholar 

  34. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li C-R, Tang TB, Roduit B, Malek J, Mitsuhashi T. Computational aspects of kinetic analysis. Part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabriye Piskin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sari Yilmaz, M., Piskin, S. The removal of template from SBA-15 samples synthesized from different silica sources. J Therm Anal Calorim 121, 1255–1262 (2015). https://doi.org/10.1007/s10973-015-4568-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4568-2

Keywords

Navigation