Skip to main content

Advertisement

Log in

Feasible Evaluation of the Thermo-mechanical Properties of Shape Memory Polyurethane for Orthodontic Archwire

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

In orthodontic treatment with fixed appliances, the use of nickel alloy for archwire may cause nickel allergy suffered from the release of nickel ions. In addition, esthetic concerns are a problem for many people. Shape memory polymer (SMP), as a functional material with the ability of thermo-driven shape change to produce force and with good biocompatible properties, possesses the potential to be used in orthodontic appliances. To investigate the feasibility of using polyurethane (PU) as orthodontic archwire, a kind of SMP, namely shape memory polyurethane (SMPU), a simulation via finite element method was conducted, based on a new three dimensional (3D) thermo-mechanical constitutive model and data acquired from some mechanics experiments related to temperature. Finally, a tooth-moving simulation with SMPU archwire on a wax model was performed. The results illustrated that SMPU wire shows good prospects in orthodontic application: the archwire with a 0.5 mm diameter can supply recovery force with magnitude 0.588–1.176 N (60–120 g), which is within the required range 0.49–2.94 N (50–300 g) for tooth movement. However, the force is smaller than that produced from metal wire, and more work related to material strengthening, such as filling SMPU with reinforcement material, is required in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bos, A., Hoogstraten, J., & Prahl-Andersen, B. (2003). Expectations of treatment and satisfaction with dentofacial appearance in orthodontic patients. American Journal of Orthodontics and Dentofacial Orthopedics, 123, 127–132.

    Article  Google Scholar 

  2. Natali, A. N. (2003). Dental biomechanics. London: Taylor & Francis.

    Book  Google Scholar 

  3. Zhang, H., Guo, S., Wang, D., Zhou, T., Wang, L., & Ma, J. (2016). Effects of nanostructured, diamondlike, carbon coating and nitrocarburizing on the frictional properties and biocompatibility of orthodontic stainless steel wires. Angle Orthodontist. doi:10.2319/090715-602.1.

    Google Scholar 

  4. Čolić, M., Tomić, S., Rudolf, R., Marković, E., & Šćepan, I. (2016). Differences in cytocompatibility, dynamics of the oxide layers’ formation, and nickel release between superelastic and thermo-activated nickel–titanium archwires. Journal of Materials Science Materials in Medicine, 27, 128.

    Article  Google Scholar 

  5. Obaisi, N. A., Galang-Boquiren, M. T. S., Evans, C. A., Tsay, T. G. P., Viana, G., Berzins, D., et al. (2016). Comparison of the transformation temperatures of heat-activated Nickel-Titanium orthodontic archwires by two different techniques. Dental Materials, 32, 879–888.

    Article  Google Scholar 

  6. Gil, F. J., & Planell, J. A. (1999). Effect of copper addition on the superelastic behavior of Ni-Ti shape memory alloys for orthodontic applications. Journal of Biomedical Materials Research, 48, 682–688.

    Article  Google Scholar 

  7. Pompei-Reynolds, R. C., & Kanavakis, G. (2014). Interlot variations of transition temperature range and force delivery in copper-nickel-titanium orthodontic wires. American Journal of Orthodontics and Dentofacial Orthopedics, 146, 215–226.

    Article  Google Scholar 

  8. Elahinia, M. H., Hashemi, M., Tabesh, M., & Bhaduri, S. B. (2012). Manufacturing and processing of NiTi implants: A review. Progress in Materials Science, 57(5), 911–946.

    Article  Google Scholar 

  9. Liu, J. K., Lee, T. M., & Liu, I. H. (2011). Effect of loading force on the dissolution behavior and surface properties of nickel-titanium orthodontic archwires in artificial saliva. American Journal of Orthodontics and Dentofacial Orthopedics, 140, 166–176.

    Article  Google Scholar 

  10. Martín-Cameán, A., Jos, Á., Mellado-García, P., Iglesias-Linaresc, A., Solanoa, E., & Cameánb, A. M. (2015). In vitro and in vivo evidence of the cytotoxic and genotoxic effects of metal ions released by orthodontic appliances: a review. Environmental Toxicology and Pharmacology, 40, 86–113.

    Article  Google Scholar 

  11. Ghosh, P., & Srinivasa, A. R. (2011). A two-network thermomechanical model of a shape memory polymer. International Journal of Engineering Science, 49, 823–838.

    Article  Google Scholar 

  12. Freitas, M. P. M., Oshima, H. M. S., & Menezes, L. M. (2011). Release of toxic ions from silver solder used in orthodontics: An in situ evaluation. American Journal of Orthodontics and Dentofacial Orthopedics, 140, 177–181.

    Article  Google Scholar 

  13. Hussain, H. D., Ajith, S. D., & Goel, P. (2016). Nickel release from stainless steel and nickel titanium archwires: An in vitro study. Journal of Oral Biology and Craniofacial Research.. doi:10.1016/j.jobcr.2016.06.001.

    Google Scholar 

  14. Larrea, M., Zamora, N., Cibrian, R., Gandia, J. L., & Paredes, V. (2015). Pain evaluation between stainless steel and nickel titanium arches in orthodontic treatment: A comparative study. Chapter in emerging trends in oral health sciences and dentistry. Berlin: InTech.

    Book  Google Scholar 

  15. Flanagan, J. (2015). Comparison of the mechanical and surface properties of retrieved and unused aesthetic orthodontic archwire, Dissetation for Master Degree, the University of Birmingham.

  16. Rongo, R., Valletta, R., Bucci, R., Rivieccio, V., Galeotti, A., Michelotti, A., et al. (2016). In vitro biocompatibility of nickel-titanium esthetic orthodontic archwires. Angle Orthodontist. doi:10.2319/100415-663.1.

    Google Scholar 

  17. Singh, D. P. (2016). Esthetic archwires in orthodontics: A review. Journal of Oral Hygiene Health., 4, 194.

    Google Scholar 

  18. Nakasima, A., Hu, J. R., Ichinose, M., & Shimada, H. (1991). Potential application of shape memory plastic as elastic material in clinical orthodontics. European Journal of Orthodontics, 13, 179–186.

    Article  Google Scholar 

  19. Liu, C., Qin, H., & Mather, P. T. (2007). Review of progress in shape-memory polymers. Journal of Materials Chemistry, 17, 1543–1558.

    Article  Google Scholar 

  20. Wu, J., Yuan, C., Ding, Z., Isakov, M., Mao, Y., Wang, T., et al. (2016). Multi-shape active composites by 3D printing of digital shape memory polymers. Science Report, 6, 24224.

    Article  Google Scholar 

  21. Lendlein, A., Behl, M., Hiebl, B., & Wischke, C. (2010). Shape-memory polymers as a technology platforms for biomedical applications. Expert Review of Medical Devices, 7(3), 357–379.

    Article  Google Scholar 

  22. Singhal, P., Rodriguez, J. N., Small, W., Eagleston, S., Water, J. V., Maitland, D. J., et al. (2012). Ultra low density and highly crosslinked biocompatible shape memory polyurethane foams. Journal of Polymer Science Part B, 50, 724–737.

    Article  Google Scholar 

  23. Lacerda-Santos, R., Nascimento, A. S. B., Pereira, A. R. B., Freire, P. P. M., Pithon, M. M., & Romanos, M. T. V. (2015). Citotoxicity of nonlatex elastomeric ligatures of orthodontic use. Revista Matéria, 20, 1–7.

    Article  Google Scholar 

  24. Tobushi, H., Hara, H., Yamada, E., & Hayashi, S. (1996). Thermomechanical properties in a thin film of shape memory polymer of polyurethane series. Smart Materials and Structures, 5, 483–491.

    Article  Google Scholar 

  25. Espinar, E., Llamas, J. M., Michiardi, A., Ginebra, M. P., & Gil, F. J. (2011). Reduction of Ni release and improvement of the friction behaviour of NiTi orthodontic archwires by oxidation treatments. Journal of Material Science, 22, 1119–1125.

    Google Scholar 

  26. Smith, S. L., Romanyk, D. L., Major, P. W., Paul, W., & Ayranci, C. (2016). An investigation on the preparation and mechanical properties of three-dimensional braided composite orthodontic archwires. Journal of International Oral Health, 8, 554–559.

    Google Scholar 

  27. Spendlove, J., Berzins, D. W., Pruszynski, J. E., & Ballard, R. W. (2015). Investigation of force decay in aesthetic, fibre-reinforced composite orthodontic archwires. European Journal of Orthodontics, 37, 43–48.

    Article  Google Scholar 

  28. Tanimoto, Y., Inami, T., Yamaguchi, M., Nishiyama, N., & Kasai, K. (2015). Preparation, mechanical, and in vitro properties of glass fiber-reinforced polycarbonate composites for orthodontic application. Journal of Biomedical Materials Research, 103, 743–750.

    Article  Google Scholar 

  29. Tobushi, H., Hashimoto, T., Hayashi, S., & Yamada, E. (1997). Thermomechanical constitutive modelling in shape memory polymer of polyurethane series. Journal of Intelligent Material Systems and Structures, 8, 711–718.

    Article  Google Scholar 

  30. Tobushi, H., Okumura, H. K., Hayashi, S., & Itoj, N. (2001). Thermomechanical constitutive model of shape memory polymer. Mechanics of Materials, 33, 545–554.

    Article  Google Scholar 

  31. Taherzadeh, M., Baghani, M., Baniassadi, M., Abriniaa, K., & Safdarib, M. (2016). Modeling and homogenization of shape memory polymer nanocomposites. Composites Part B, 91, 36–43.

    Article  Google Scholar 

  32. Park, H., Harrison, P., Guo, Z., Lee, M. G., & Yu, W. R. (2016). Three-dimensional constitutive model for shape memory polymers using multiplicative decomposition of the deformation gradient and shape memory strains. Mechanics of Materials, 93, 43–62.

    Article  Google Scholar 

  33. Djeu, G., Shelton, C., & Maganzini, A. (2005). Outcome assessment of Invisalign and traditional orthodontic treatment compared with the American Board of Orthodontics objective grading system. American Journal of Orthodontics and Dentofacial Orthopedics, 128, 292–298.

    Article  Google Scholar 

  34. Han, J. Y. (2015). A comparative study of combined periodontal and orthodontic treatment with fixed appliances and clear aligners in patients with periodontitis. Journal of Periodontal & Implant Science, 45, 193–204.

    Article  Google Scholar 

  35. Ata-Ali, F., Ata-Ali, J., Ferrer-Molina, M., Cobo, T., Carlos, F. D., & Cobo, J. (2016). Adverse effects of lingual and buccal orthodontic techniques: A systematic review and meta-analysis. American Journal of Orthodontics and Dentofacial Orthopedics, 149, 820–829.

    Article  Google Scholar 

  36. Ni, Q. Q., Zhang, C., Fu, Y., Dai, G., & Kimura, T. (2007). Shape memory effect and mechanical properties of carbon nanotube/shape memory polymer nanocomposites. Composite Structures, 81, 176–184.

    Article  Google Scholar 

  37. Yu, J. H., Wu, L. C., Hsu, J. T., Chang, Y. Y., Huang, H. H., & Huang, H. L. (2011). Surface roughness and topography of four commonly used types of orthodontic archwire. Journal of Medical and Biological Engineering, 31, 367–370.

    Article  Google Scholar 

  38. Yang, B., Huang, W. M., Li, C., Lee, C. M., & Li, L. (2004). On the effects of moisture in a polyurethane shape memory polymer. Smart Materials and Structures, 13, 191–195.

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by National Natural Science Foundation of China (Grant No. 51375453), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Feng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YF., Wu, JL., Zhang, JX. et al. Feasible Evaluation of the Thermo-mechanical Properties of Shape Memory Polyurethane for Orthodontic Archwire. J. Med. Biol. Eng. 37, 666–674 (2017). https://doi.org/10.1007/s40846-017-0263-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-017-0263-z

Keywords

Navigation