Skip to main content
Log in

Reaction enthalpies of Cu2ZnSnSe4 synthesis in KI

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The phase transitions and chemical reactions in the formation process of Cu2ZnSnSe4 (CZTSe) from CuSe, SnSe, and ZnSe in the presence of KI were studied using the DTA method for the determination of thermal effects. XRD and Raman spectroscopy were performed for the phase analysis in samples after heating them for prolonged time to several degrees of temperatures higher than peak-top temperatures of DTA effects in heating and cooling curves. The chemical pathways of the CZTSe formation before and during the melting of KI were clarified. The reaction enthalpies were determined using pure KI as a substance for the calibration of enthalpy values. In the mixtures, the melting of KI is always accompanied by some dissolution of the precursor compounds and lowering of the melting temperature in comparison with pure KI. The initiator of the process of the partial CZTSe formation at around 400 °C is elemental Se. The CZTSe formation of binary precursors in liquid phase of KI takes place with the experimentally determined enthalpy of −36 ± 2 kJ mol−1. The heat of fusion of formed CZTSe is 4 kJ mol−1 at 788 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barkhouse DAR, Gunawan O, Gokmen T, Todorov TK, Mitzi DB. Device characteristics of a 10.1 % hydrazine processed Cu2ZnSn(Se, S)4 solar cell. Prog Photovoltaics Res Appl. 2012;20:6–11.

    Article  CAS  Google Scholar 

  2. Grossberg M, Krustok J, Timmo K, Altosaar M. Photoluminescence and Raman study of Cu2ZnSn(Sex S1−x)4 monograins for photovoltaic applications. Thin Solid Films. 2009;517:2489–92.

    Article  CAS  Google Scholar 

  3. Chopra KL, Paulson PD, Dutta V. Thin-film solar cells: an overview. Prog Photovoltaics Res Appl. 2004;12:69–92.

    Article  CAS  Google Scholar 

  4. Wang W, Winkler MT, Gunawan O, Gokmen T, Todorov TK, Zhu Y, Mitzi DB. Device characteristics of CZTSSe thin-film solar cells with 12.6 % efficiency. Adv Energy Mater. 2013;. doi:10.1002/aenm.201301465.

    Google Scholar 

  5. Scragg JJ, Ericson T, Kubart T, Edoff M, Platzer-Björkman C. Chemical insights into the instability of Cu2ZnSnS4 films during annealing. Chem Mater. 2011;. doi:10.1021/cm202379s.

    Google Scholar 

  6. Weber A, Mainz R, Unold T, Schorr S, Schock HW. In-situ XRD on formation reactions of Cu2ZnSnS4 thin films. Phys Status Solidi C. 2009;. doi:10.1002/pssc.200881231.

    Google Scholar 

  7. Dudchak IV, Piskach LV. Phase equilibria in the Cu2S–ZnS–SnS2 system. J Alloy Compd. 2003;351:145–50.

    Article  CAS  Google Scholar 

  8. Nkwusi G, Leinemann I, Grossberg M, Kaljuvee T, Traksmaa R, Altosaar M, Meissner D. CYSENI 2012. In: 9th international conference of young scientists on energy issues, Kaunas; 24–25 May 2012. p. II 38–II 46.

  9. Klavina I, Raudoja J, Altosaar M, Mellikov E, Meissner D, Kaljuvee T. CYSENI 2010. Proceeding of annual conference of young scientists on energy issues. [CD]. Kaunas: Lithuanian Energy Institute; 27–28 May 2010.

  10. Klavina I, Kaljuvee T, Timmo K, Raudoja J, Traksmaa R, Altosaar M, Meissner D. Study of Cu2ZnSnSe4 monograin formation in molten KI starting from binary chalcogenides. Thin Solid Films. 2011;519:7399–402.

    Article  CAS  Google Scholar 

  11. Maeda T, Nakamura S, Wada T. First principles calculations of defect formation in In-free photovoltaic semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4. Jpn J Appl Phys. 2011;. doi:10.1143/JJAP.50.04DP07.

    Google Scholar 

  12. Mellikov E, Hiie J, Altosaar M. Powder materials and technologies for solar cells. Int J Mater Prod Technol. 2007;28:291–311.

    Article  CAS  Google Scholar 

  13. Leinemann I, Zhang W, Kaljuvee T, Tõnsuaadu K, Traksmaa R, Raudoja J, Grossberg M, Altosaar M, Meissner D. Cu2ZnSnSe4 formation and reaction enthalpies in molten NaI starting from binary chalcogenides. J Therm Anal Calorim. 2014;118:1313–21.

    Article  CAS  Google Scholar 

  14. Knacke O, Kubaschewski O, Hesselman K. Thermochemical properties of inorganic substances. 2nd ed. Berlin: Springer-Verlag; 1991.

    Google Scholar 

  15. Mullin JW. Crystallization. 3rd ed. Oxford: Butterworth-Heinemann, a division of Reed Educational and Professional Publishing Ltd; 1993.

    Google Scholar 

  16. Blomgren GE, Van Artsdalen ER. Annu Rev Phys Chem. 1960;11:273–306.

    Article  CAS  Google Scholar 

  17. Wakita H, Johansson G, Sandström M, Goggin PL, Ohtaki H. Structure determination of zinc iodide complexes formed in aqueous solution. J Solut Chem. 1991;20:643–68.

    Article  CAS  Google Scholar 

  18. Li D. Fast and mass synthesis of ZnS nanosheet via ultra-strong surface interaction. Cryst Eng Commun. 2013;. doi:10.1039/C3CE41529E.

    Google Scholar 

  19. Linde DR. Handbook of chemistry and physics. 90th ed. New York: CRC; 2010.

    Google Scholar 

  20. Lyday PA. Iodine and iodine compounds. Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley; 2005.

    Google Scholar 

  21. Whipp B. The adsorption of iodine by potassium. Proc R Soc Lond A. 1933;141:217–32.

    Article  CAS  Google Scholar 

  22. Kelly FC. Study of the stability of the iodine compounds in iodized salts. Bull World Health Org. 1953;9:217–30.

    CAS  Google Scholar 

  23. Sofronov DS, Kudin KA, Voloshko AY, Kudin AM, Shishkin OV. Origin of the thermal desorption peeks of gases in NaI above 180 °C. Inorg Mater. 2009;45:1314–8.

    Article  CAS  Google Scholar 

  24. Glushko PV. Thermocenter of the Russian Academy of Sciences. Moscow: IVTAN Association; 1994.

    Google Scholar 

  25. Landolt-Börnstein. Thermodynamic properties of inorganic material. scientific group thermodata europe (SGTE). Berlin: Springer-Verlag; 1999.

    Google Scholar 

  26. Gurvich LV, Veitz IV. Thermodynamic properties of individual substances. 4th ed. Hemisphere: Pub Co. NY, L.; 1989.

    Google Scholar 

  27. Mills KC. Thermodynamic data for inorganic sulfides, selenides and tellurides. London: Butterworths; 1974.

    Google Scholar 

  28. Binnewies M, Milke E. Thermochemical data of elements and compounds. 2nd ed. Weinheim: Wiley; 2002.

    Book  Google Scholar 

  29. Yungman VS, Glushko VP, Medvedev VA, Gurvich LV. Thermal constants of substances. New York: Alden Books; 1999.

    Google Scholar 

  30. Gerasimov YI, Krestovnikov AN, Gorbov SI. Chimicheskaya thermodynamica v cvetnoi metallurgii. Thermodynamica selena i selenidov, tellura i telluridov. 4th ed. Moskov: Metallurgija; 1974.

    Google Scholar 

  31. Barin I. Thermochemical Data of Pure Substances. Weinheim: VCH Verlags Gesellschaft; 1989.

    Google Scholar 

  32. Glazov VM, Pashinkin S, Fedorov VA. Phase equilibria in the Cu–Se system. Inorg Mater. 2000;36:641–52.

    Article  CAS  Google Scholar 

  33. Stolen S, Fjellag H, Gronvold E. Heat capacity, structural and thermodynamic properties of synthetic klockmannite CuSe at temperatures from 5 K to 652.7 K. Enthalpy of decomposition. J Chem Thermodyn. 1996;28:753–66.

  34. Barin I. Thermochemical data of pure substances, Part I. Weinheim: mVCH Verlags Gesellschaft; 1993.

    Google Scholar 

  35. Wells AF. Structural inorganic chemistry. 5th ed. Oxford: Oxford University Press; 1984.

    Google Scholar 

  36. Nakamura S, Maeda T, Tabata T, Wada T. First-principles study of indium-free photovoltaic compounds Ag2ZnSnSe4 and Cu2ZnSnSe4. In: Proceeding of the 37th IEEE photovoltaic specialist conference. Seattle: Washington State Convention Center; 2011. pp.785–786.

  37. Xiancong H, Honglie S. First-principles calculation of some mechanical and thermo-physical properties of kesterite-type Cu2ZnSnSe4. Phys Scr. 2012;. doi:10.1088/0031-8949/85/03/0353002.

    Google Scholar 

Download references

Acknowledgements

The Doctoral Studies and Internationalization Program DoRa of the European Social Funds, Estonian Science Foundation grants (G8964 and G9425), the projects of Estonian Ministry of Education and Research (IUT 19-28 and TK117T), EAS (EU29713), and National R&D programs (AR10128 and AR12128) supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inga Leinemann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leinemann, I., Timmo, K., Grossberg, M. et al. Reaction enthalpies of Cu2ZnSnSe4 synthesis in KI. J Therm Anal Calorim 119, 1555–1564 (2015). https://doi.org/10.1007/s10973-014-4339-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4339-5

Keywords

Navigation