Skip to main content
Log in

Pyrolysis mechanism and electrical properties of 3D-hybrid organic–inorganic materials based on zirconium oxides-hydroxides, 3-butenoates and vinyltrimethoxysilane

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This report is focused on the quantitative thermogravimetric–mass spectrometric (TG–MS) analyses and the electrical response of two hybrid organic–inorganic materials (HYP and HYPC), obtained reacting together nanoclusters of zirconium oxides-hydroxides with 3-butenoates and cross-linked with vinyltrimethoxysilane. HYP was cured at 363 K, while HYPC at 403 K. Condensation of the silanol groups, producing shrinkage, alcoholation and the release of 3-butenoic acid and methyl 3-butenoate are the main processes involved in the early stages of pyrolysis from 323 to 633 K. The nominal formula for the two samples with a fair degree of approximation was obtained by elemental analysis and quantitative TG–MS measurements. Morphology of HYP and HYPC is determined by high-resolution transmission electron microscopy. In both HYP and HYPC, the electric response is characterized by a molecular dipole relaxation detected at higher frequencies and an inter-domain polarization phenomenon revealed at the lower frequencies, due to the presence of charged interfaces between nanodomains with different permittivities. HYP material showed a further dipole relaxation at intermediate frequencies, which assists the charge migration process. HYPC, containing a smaller density of 3-butenoate groups, reveals a long-range charge migration event of mobile species by hopping processes between relatively stiff sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sanchez C, Romero PG. Functional hybrid materials. Weinheim: Wiley-VCH; 2004.

    Google Scholar 

  2. Kickelbick G. Hybrid materials, synthesis, characterization and applications. Weinheim: Wiley-VCH; 2007.

    Google Scholar 

  3. Schubert U. Polymers reinforced by covalently bonded inorganic clusters. Chem Mater. 2001;13:3487–94.

    Article  CAS  Google Scholar 

  4. Schubert U. Organofunctional metal oxide clusters as building blocks for inorganic–organic hybrid materials. J Sol–Gel Sci Technol. 2004;31:19–24.

    Article  CAS  Google Scholar 

  5. Schubert U. In: Laine R, Blum F, editors. Organic/inorganic hybrid materials. Washington, DC: American Chemical Society; 2003.

    Google Scholar 

  6. Kickelbick G, Schubert U. Inorganic clusters in organic polymers and the use of polyfunctional inorganic compounds as polymerization initiators. Mon Chem. 2001;132:13–30.

    Article  CAS  Google Scholar 

  7. Special issue on organic–inorganic nanocomposites. Chem Mater. 2001;13.

  8. Kickelbick G. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog Polym Sci. 2003;28:83–114.

    Article  CAS  Google Scholar 

  9. Sanchez C. Advanced functional nanomaterials—from nanoscale objects to nanostructured inorganic and hybrid materials. Prog Solid State Chem. 2005;33:57.

    Article  CAS  Google Scholar 

  10. Sanchez C, de Soler-Illia GJ, Ribot F, Lalot T, Mayer CR, Cabuil V. Designed hybrid organic–inorganic nanocomposites from functional nanobuilding blocks. Chem Mater. 2001;13:3061–83.

    Article  CAS  Google Scholar 

  11. Ribot F, Sanchez C. Organically functionalized metallic oxo-clusters: structurally well-defined nanobuilding blocks for the design of hybrid organic–inorganic materials. Comments Inorg Chem. 1999;20:327–71.

    Article  CAS  Google Scholar 

  12. Trimmel G, Gross S, Kickelbick G, Schubert U. Swelling behavior and thermal stability of poly(methylmethacrylate) crosslinked by the oxozirconium cluster Zr4O2(methacrylate)12. Appl Organomet Chem. 2001;15:401–6.

    Article  CAS  Google Scholar 

  13. Schubert U, Trimmel G, Moraru B, Tesch W, Fratzl P, Gross S, Kickelbick G, Hüsing N. Inorganic–organic hybrid polymers from surface-modified oxometallate clusters. Mater Res Soc Symp Proc. 2001;268:C.C. 2.3.1. doi:10.1557/PROC-628-CC2.3.

  14. Gross S, Di Noto V, Schubert U. Dielectric investigation of inorganic–organic hybrid film based on zirconium oxocluster-crosslinked PMMA. J Non-Cryst Solids. 2003;322:154–9.

    Article  CAS  Google Scholar 

  15. Trimmel G, Moraru B, Gross S, Di Noto V, Schubert U. Cross-linking of poly(methyl methacrylate) by oxozirconate and oxotitanate clusters. Macromol Symp. 2001;175:357–66.

    Article  CAS  Google Scholar 

  16. Gross S, Trimmel G, Schubert U, Di Noto V. Inorganic–organic hybrid materials from poly(methylmethacrylate) crosslinked by an organically modified oxozirconium cluster. Synthesis and characterization. Polym Adv Technol. 2002;13:254–9.

    Article  CAS  Google Scholar 

  17. Gross S, Di Noto V, Kickelbick G, Schubert U. Cluster-crosslinked inorganic–organic hybrid polymers: influence of the cluster type on the materials properties. Mater Res Soc Symp Proc. 2002;726:Q4.1.1. doi:10.1557/PROC-726-Q4.1.

  18. Graziola F, Girardi F, Bauer M, Bertagnolli H, Di Maggio R, Gross S. UVphotopolymerisation of poly(methyl methacrylate)-based inorganic–organic hybrid coatings and bulk samples reinforced with methacrylate-modified zirconium oxocluster. Polymer. 2008;49:4332–43.

    Article  CAS  Google Scholar 

  19. Graziola F, Girardi F, Aldighieri P, Fedrizzi L, Gross S, Di Maggio R. Inorganic–organic hybrid materials with zirconium oxoclusters as protective coatings on aluminium alloys. Prog Org Coat. 2008;62:376–81.

    Article  Google Scholar 

  20. Schubert U, Völkel T, Moszner N. Mechanical properties of an inorganic–organic hybrid polymer cross-linked by the cluster Zr4O2(methacrylate)12. Chem Mater. 2001;13:3811–2.

    Article  CAS  Google Scholar 

  21. Moraru B, Hüsing N, Kickelbick G, Schubert U, Fratzl P, Peterlik H. Inorganic–organic hybrid polymers by polymerization of methacrylate- or acrylate-substituted oxotitanium clusters with methyl methacrylate or methacrylic acid. Chem Mater. 2002;14:2732–40.

    Article  CAS  Google Scholar 

  22. Gao Y, Choudhury N, Matisons J, Schubert U. Part 2: inorganic–organic hybrid polymers by polymerization of methacrylate-substituted oxotitanium clusters with methyl methacrylate: thermomechanical and morphological properties. Chem Mater. 2002;14:4522–9.

    Article  CAS  Google Scholar 

  23. Palacio F, Oliete P, Schubert U, Mijatovic I, Hüsing N, Peterlik H. Magnetic behaviour of a hybrid polymer obtained from ethyl acrylate and the magnetic cluster Mn12O12(acrylate)16. J Mater Chem. 2004;14:1873–8.

    Article  CAS  Google Scholar 

  24. Kogler FR, Jupa M, Puchberger M, Schubert U. Control of the ratio of functional and non-functional ligands in clusters of the type Zr6O4(OH)4(carboxylate)12 for their use as building blocks for inorganic–organic hybrid polymers. J Mater Chem. 2004;14:3133–8.

    Article  CAS  Google Scholar 

  25. Gao Y, Kogler FR, Schubert U. Improvement of the thermal stability of cluster-crosslinked polystyrene and poly(methyl methacrylate) by optimization of the polymerization conditions. J Polym Sci A. 2005;43:6586–91.

    Article  CAS  Google Scholar 

  26. Trabelsi S, Janke A, Hassler R, Zafeiropoulos NE, Fornasieri G, Bocchini S, Rozes L, Stamm M, Gerard F, Sanchez C. Novel organo-functional titanium-oxo-cluster-based hybrid materials with enhanced thermomechanical and thermal properties. Macromolecules. 2005;38:6068–78.

    Article  CAS  Google Scholar 

  27. Sangermano M, Gross S, Pracella L, Priola A, Rizza G. Hybrid organic–inorganic nanostructured acrylic films based on methacrylate modified zirconium oxocluster. Macromol Phys Chem. 2007;208:1730–6.

    Article  CAS  Google Scholar 

  28. Sangermano M, Gross S, Priola A, Rizza G, Sada C. Thiol-ene hybrid organic–inorganic nanostructured coatings based on thiol-functionalised zirconium oxocluster. Macromol Phys Chem. 2007;208:2560–8.

    Article  CAS  Google Scholar 

  29. Faccini F, Fric H, Schubert U, Wendel E, Tsetsgee O, Müller K, Bertagnolli H, Venzo A, Gross S. ω-Mercapto-functionalized hafnium- and zirconium-oxoclusters as nanosized building blocks for inorganic–organic hybrid materials: synthesis, characterization and photothiol-ene polymerization. J Mater Chem. 2007;17:3297–307.

    Article  CAS  Google Scholar 

  30. Gao Y, Kogler FR, Peterlik H, Schubert U. Ring-opening metathesis polymerizations with norbornene carboxylate-substituted metal oxo clusters. J Mater Chem. 2006;16:3268–76.

    Article  CAS  Google Scholar 

  31. Gross S, Camozzo D, Di Noto V, Armelao L, Tondello E. PMMA: a key macromolecular component for dielectric low-κ hybrid inorganic–organic polymer films. Eur Polym J. 2007;43:673–96.

    Article  CAS  Google Scholar 

  32. Di Maggio R, Dirè S, Callone E, Girardi F, Kickelbick G. Hybrid organic–inorganic materials using zirconium based NBBs and vinyl trimethoxysilane: effect of pre-hydrolysis of silane. Polymer. 2010;51:832–41.

    Article  Google Scholar 

  33. Di Maggio R, Dirè S, Callone E, Girardi F, Kickelbick G. Si and Zr based NBBS for hybrid O/I macromolecular materials starting by preformed zirconium oxo-clusters. J Sol–Gel Sci Technol. 2008;48:168–71.

    Article  Google Scholar 

  34. Campostrini R, D’Andrea G, Carturan G, Ceccato R, Sorarù G. Pyrolysis study of methyl-substituted Si–H containing gels as precursors for oxycarbide glasses, by combined thermogravimetry, gas chromatographic and mass spectrometric analysis. J Mater Chem. 1996;6:585–94.

    Article  CAS  Google Scholar 

  35. Campostrini R, Ischia M, Palmisano L. Pyrolysis study of sol–gel derived TiO2 powders: Part IV. TiO2–anatase prepared by hydrolysing titanium(IV) isopropoxide without chelating agents. J Therm Anal Calorim. 2004;75:25–44.

    Article  CAS  Google Scholar 

  36. Dirè S, Campostrini R, Ceccato R. Pyrolysis chemistry of sol–gel-derived poly(dimethylsiloxane)–zirconia nanocomposites. Influence of zirconium on polymer-to ceramic conversion. Chem Mater. 1998;10:268–78.

    Article  Google Scholar 

  37. Di Maggio R, Campostrini R, Guella G. Gels from modified zirconium n-butoxide: a pyrolysis study by coupled thermogravimetry, gas chromatographic, and mass spectrometric analyses. Chem Mater. 1998;10:3839–47.

    Article  Google Scholar 

  38. Campostrini R, Ischia M, Armelao L. Pyrolysis study of fluorinated sol–gel silica. J Therm Anal Calorim. 2004;78:657–77.

    Article  CAS  Google Scholar 

  39. Campostrini R, Sicurelli A, Ischia M, Carturan G. Pyrolysis study of a hydride–sol–gel silica. J Therm Anal Calorim. 2007;89:633–41.

    Article  CAS  Google Scholar 

  40. Campostrini R, Ischia M, Palmisano L. Pyrolysis study of sol–gel derived TiO2 powders: Part I. TiO2–anatase prepared by reacting titanium(IV) isopropoxide with formic acid. J Therm Anal Calorim. 2003;71:997–1010.

    Article  CAS  Google Scholar 

  41. Campostrini R, Ischia M, Palmisano L. Pyrolysis study of sol–gel derived TiO2 powders: Part II. TiO2–anatase prepared by reacting titanium(IV) isopropoxide with oxalic acid. J Therm Anal Calorim. 2003;71:1011–22.

    Article  CAS  Google Scholar 

  42. Campostrini R, Ischia M, Palmisano L. Pyrolysis study of sol–gel derived TiO2 powders: Part III. TiO2–anatase prepared by reacting titanium(IV) isopropoxide with acetic acid. J Therm Anal Calorim. 2004;75:13–24.

    Article  CAS  Google Scholar 

  43. Young KF, Frederikse PR. Compilation of the static dielectric constant of inorganic solids. J Phys Chem Ref Data. 1973;2:313–410.

  44. Schönhals A. In: Runt JP, Fitzgeral JJ, editors. Dielectric spectroscopy of polymeric materials: fundamentals and applications. Washington, DC: ACS; 1997.

    Google Scholar 

  45. Lavina S, Negro E, Pace G, Gross S, Depaoli G, Vidali M, Di Noto V. Dielectric low-k composite films based on PMMA, PVC and methylsiloxane–silica: synthesis, characterization and electrical properties. J Non-Cryst Solids. 2007;353:2878–88.

    Article  CAS  Google Scholar 

  46. Di Noto V, Boeer AB, Lavina S, Muryn CA, Bauer M, Timco GA, Negro E, Ranean M, Winpenny REP, Gross S. Functional chromium wheel-based hybrid organic–inorganic materials for dielectric applications. Adv Funct Mater. 2009;19:3226–36.

    Article  Google Scholar 

  47. Gross S, Zattin A, Di Noto V, Lavina S. Metal oxoclusters as molecular building blocks for the development of nanostructured inorganic–organic hybrid thin films. Mon Chem. 2006;137:583–93.

    Article  CAS  Google Scholar 

  48. Di Noto V, Giffin GA, Vezzù K, Piga M, Lavina S. Broadband dielectric spectroscopy: a powerful tool for the determination of charge transfer mechanisms in ion conductors. In: Knauth P, Di Vona ML, editors. Solid state proton conductors: properties and applications in fuel cells, vol. 1. Chichester: Wiley; 2012. p. 113–9.

    Google Scholar 

  49. Devaraju S, Vengatesan MR, Selvi M, Alagar M. Thermal and dielectric properties of newly developed linear aliphatic-ether linked bismaleimide–polyhedral oligomeric silsesquioxane (POSS–AEBMI) nanocomposites. J Therm Anal Calorim. 2014;117:1047–63.

    Article  CAS  Google Scholar 

  50. Di Noto V, Giffin GA, Vezzù K, Piga M, Lavina S. Broadband dielectric spectroscopy: a powerful tool for the determination of charge transfer mechanisms in ion conductors. In: Knauth P, Di Vona ML, editors. Solid state proton conductors: properties and applications in fuel cells, vol. 1. Chichester: Wiley; 2012. p. 127–32.

    Google Scholar 

  51. Di Noto V, Furlani M, Lavina S. Synthesis, characterization and ionic conductivity of poly[(oligoethylene oxide) ethoxysilane] and poly[(oligoethylene oxide) ethoxysilane]/(EuCl3)0.67. Polym Adv Technol. 1996;7:759–67.

    Article  Google Scholar 

  52. Leoni M, Di Maggio R, Polizzi S, Scardi P. X-ray diffraction methodology for the microstructural analysis of nanocrystalline powders: application to cerium oxide. J Am Ceram Soc. 2004;87:1133–40.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Girardi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 184 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavina, S., Campostrini, R., Girardi, F. et al. Pyrolysis mechanism and electrical properties of 3D-hybrid organic–inorganic materials based on zirconium oxides-hydroxides, 3-butenoates and vinyltrimethoxysilane. J Therm Anal Calorim 119, 2305–2319 (2015). https://doi.org/10.1007/s10973-014-4297-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4297-y

Keywords

Navigation