Skip to main content
Log in

Experimental determination of the adsorption isotherms in gas mixtures under extended pressure and temperature range

Application to the CO2–CH4 binary mixture

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

An experimental tool was adapted and developed to measure adsorption in gas mixture under broad range of pressure and temperature. The approach of this “homemade” apparatus consists in coupling a manometric device with a gas chromatograph. The core of the paper is thus devoted to a detailed description of both the experimental apparatus and methodology applied for the measurements. The adsorption of pure carbon dioxide and methane and their equimolar mixture were studied in a microporous activated carbon. Experimental isotherms are provided up to 3 MPa for three temperatures at 303.15, 323.15, and 353.15 K. As expected, the binary adsorption isotherms mixture reveals a preferential adsorption of CO2 compared to CH4 over the whole pressure and temperature range. A separation factor of about 2.5 was observed. This separation factor decreases with increasing pressure. Finally, the consistency between the pure compound and the binary mixture data was checked by the use of the IAST theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pires J, Bestilleiro M, Pinto M, Gil A. Selective adsorption of carbon dioxide, methane and ethane by porous clays heterostructures. Sep Purif Technol. 2008;61:161–7.

    Article  CAS  Google Scholar 

  2. Sudibandriyo M, Pan Z, Fitzgerald JE, Robert RL Jr, Gasem KA. Adsorption of methane, nitrogen, carbon dioxide, and their binary mixtures on dry activated carbon at 318.2 K and pressures up to 13.6 MPa. Langmuir. 2003;19:5323–31.

    Article  CAS  Google Scholar 

  3. Siperstein F, Gorte RJ, Myers AL. A new calorimeter for simultaneous measurements of loading and heats of adsorption from gaseous mixtures. Langmuir. 1999;15:1570–6.

    Article  CAS  Google Scholar 

  4. Ghoufi A, Gaberova L, Rouquerol J, Vincent D, Llewellyn PL, Maurin G. Adsorption of CO2, CH4 and their binary mixture in Faujasite NaY: a combination of molecular simulations with gravimetry–manometry and microcalorimetry measurements. Microporous Mesoporous Mater. 2009;119:117–28.

    Article  CAS  Google Scholar 

  5. Leyssalle JM, Papadopoulus GK, Theodorou DN. Sorption thermodynamics of CO2, CH4, and their mixtures in the ITQ-1 zeolite as revealed by molecular simulations. J Phys Chem B. 2006;110(45):22742–53.

    Google Scholar 

  6. Tompkins FC, Young DM. The adsorption of gases on caesium iodide. Trans Faraday Soc. 1951;47:77–87.

    Article  CAS  Google Scholar 

  7. Wilson RJ, Danner RP. Adsorption of synthesis gas-mixture components on activated carbon. J Chim Eng Data. 1983;28:14–8.

    Article  CAS  Google Scholar 

  8. Busch A, Gensterblum Y, Krooss BM, Siemons N. Investigation of high-pressure selective adsorption/desorption behavior of CO2 and CH4 on coals; an experimental study. Int J Coal Geol. 2006;66:53–68.

    Article  CAS  Google Scholar 

  9. Billemont P, Coasne B, Weireld G. Adsorption of carbon dioxide–methane mixtures in porous carbons: effect of surface chemistry. Adsorption. 2014;20:453–63.

    Article  CAS  Google Scholar 

  10. Clarkson CR, Bustin RM. Binary gas adsorption desorption isotherms: effect of moisture and coal composition upon carbon dioxide selectivity over methane. IJCG. 2000;42:241–71.

    CAS  Google Scholar 

  11. Bao Z, Yu L, Ren Q, Lu X, Deng S. Adsorption of CO2 and CH4 on a magnesium-based metal-organic framework. J Colloid Interface Sci. 2011;353:549–56.

    Article  CAS  Google Scholar 

  12. Bae YS, Hauser BG, Farha OK, Hupp JT, Snurr RQ. Enhancement of CO2/CH4 selectivity in metal-organic frameworks containing lithium cations. Microporous Mesoporous Mater. 2011;141:231–5.

    Article  CAS  Google Scholar 

  13. Zhang JM, Wu HH, Emge TJ, Li J. A flexible MMOF exhibiting high selectivity for CO2 over N2, CH4 and other small gases. Chem Commun. 2010;46:9152–4.

    Article  CAS  Google Scholar 

  14. Goetz V, Pupier O, Guillot A. Carbon dioxide–methane mixture adsorption on activated carbon. Adsorption. 2006;12:55–63.

    Article  CAS  Google Scholar 

  15. Abid HR, Pham GH, Ang H-M, Tade MO, Wang S. Adsorption of CH4 and CO2 on Zr-metal organic frameworks. J Colloid Interface Sci. 2012;366:120–4.

    Article  CAS  Google Scholar 

  16. Li W-X, Ge KN, Zhang B, Chen LF, Zhang Z-G. Preparation of hydrophobic silica membranes for methane and carbon dioxide separation. J Mater Eng. 2013;2:78–82.

    Google Scholar 

  17. Yi H, Li F, Ning P, Tang X, Peng J, Li Y, Deng H. Adsorption separation of CO2, CH4 and N2 on microwave activated carbon. Chem Eng J. 2013;215–216:635–42.

    Article  Google Scholar 

  18. Furmaniak S, Kowalczyk P, Terzyk AP, Gauden PA, Harris PJF. Synergetic effect of carbon nanopore size and surface oxidation on CO2 capture from CO2/CH4 mixtures. J Colloid Interface Sci. 2013;397:144–53.

    Article  CAS  Google Scholar 

  19. Denayer JFM, Couck S, Baron GV, Gascon J, Kaptejin F. Enhancement of CO2 and CH4 separation via amino-functionalisation of the MIL-53 metal-organic-framework. In: Conference proceedings. 2009 AIChE annual meeting (2009).

  20. Othman MR. Permeability and separability of methane and carbon dioxide across meso-porous Mg–Al hydrotalcite and activated carbon media. Chem Eng Sci. 2009;64(5):925–9.

    Article  CAS  Google Scholar 

  21. Rouquerol F, Rouquerol J, Sing K. Adsorption by powders and porous solids. London: Academic Press; 1999 (See Chapter 7).

  22. Mouahid A, Bessieres D, Plantier F, Pijaudier-Cabot G. Supercritical adsorption of nitrogen on EcoSorb-activated carbon at temperatures up to 383 K and pressures up to 2 MPa. J Therm Anal Calorim. 2012;109:473–9.

    Article  CAS  Google Scholar 

  23. AGA8. Compressibility and super compressibility for natural gas and other hydrocarbon gases. Transmission measurement committee report no. 8. AGA Catalog No. XQ 1285, Arlington, VA; 1992.

  24. Benedict M, Webb GB, Rubin LC. An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures: I. Methane, ethane, propane, and n-butane. J Chem Phys. 1940;8:334–45.

    CAS  Google Scholar 

  25. Horvath G, Kawazoe K. Method for the calculation of effective pore size distribution in molecular sieve carbon. J Chem Eng Jpn. 1983;16(6):470–5.

    Article  CAS  Google Scholar 

  26. Mouahid A, Bessieres D, Plantier F, Pijaudier-Cabot G. A thermostated coupled apparatus for the simultaneous determination of adsorption isotherms and differential enthalpies of adsorption at high pressure and high temperature. J Therm Anal Calorim. 2012;109:1077–87.

    Article  CAS  Google Scholar 

  27. Millward AR, Yaghi OM. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc. 2005;127:17998–9.

    Article  CAS  Google Scholar 

  28. Koh CA, Montanari T, Nooney RI, Tahir SF, Westacott RE. Experimental and computer simulations studies of the removal of carbon dioxide from mixtures with methane using AlPO4-5 and MCM-41. Langmuir. 1999;15:6043–9.

    Article  CAS  Google Scholar 

  29. Myers AL, Prausnitz JM. Thermodynamics of mixed-gas adsorption. AIChE J. 1965;11:121–7.

    Article  CAS  Google Scholar 

  30. Talu O. Thermodynamics of multicomponent gas adsorption equilibria of nonideal mixtures. Ph.D. Thesis, Arizona State University Tempe; 1984.

  31. Valenzuela DP. Physical adsorption on heterogeneous solids. Ph.D. Thesis, University of Pennsylvania, PA; 1986.

  32. Sakuth M. Messung und Modellierung bina¨rer Adsorptionsgleichgewichte an dealuminierten Y-Zeolithen. Ph.D. Thesis, University of Oldenburg, Germany; 1993.

  33. Heymans N, Vaesen S, De Weireld G. A complete procedure for acidic gas separation by adsorption on MIL-53 (Al). Microporous Mesoporous Mater. 2012;154:93–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Pino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pino, D., Plantier, F. & Bessieres, D. Experimental determination of the adsorption isotherms in gas mixtures under extended pressure and temperature range. J Therm Anal Calorim 117, 1469–1477 (2014). https://doi.org/10.1007/s10973-014-3931-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3931-z

Keywords

Navigation