Skip to main content

Advertisement

Log in

An extensive review on mesoporous silica from inexpensive resources: properties, synthesis, and application toward modern technologies

  • Review Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Mesoporous silica is emerging as a nanomaterial with potentially huge applications in the industrial sector, particularly in the fields of chemical catalysis, host-guest encapsulation, and adsorbents. These materials possess well-defined honeycomb-shaped pores that can be fine-tuned to suit adsorbing moieties of different molecular sizes, with adjustable release rates. The most significant drawback that hampers the commerciality of mesoporous silica-based processes is that the inorganic precursors used in the synthesis of these materials are quite expensive. These costs can be offset somewhat by using low-cost, renewable precursors from natural sources and recycling industrial wastes. In this review, we have collected some of the more recent laboratory attempts to prepare mesoporous silica material from low-cost precursors. Scientometric analysis was performed to find the potential of mesoporous silica manufacturing from ash sources. Various sources of mesoporous silica preparation and works related to them were explained in detail. This article also explores various techniques used for the development and gives a brief insight into the possible applications for mesoporous silica.

Graphical abstract

Highlights

  • Industrial waste ash and natural materials are promising sources for silica.

  • An overall analysis of waste utilization was provided using Scientometric studies.

  • Sustainable silica sources are used in the preparation of mesoporous materials.

  • The use of low-cost and eco-friendly silica sources is of environmental importance.

  • Current and future expectations were addressed on utilizing waste ash.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Baig N, Kammakakam I, Falath W, Kammakakam I (2021) Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater Adv 2:1821–1871. https://doi.org/10.1039/d0ma00807a

    Article  Google Scholar 

  2. Shamim S, Hornyak GL, Crespy D et al. (2022) Morphology and visible photoluminescence modulation in dye-free mesoporous silica nanoparticles using a simple calcination step. Mater Res Bull 152:111842. https://doi.org/10.1016/J.MATERRESBULL.2022.111842

    Article  CAS  Google Scholar 

  3. Teck C (2017) Progress in Polymer Science Nanofiber technology: current status and emerging developments. Prog Polym Sci 70:1–17. https://doi.org/10.1016/j.progpolymsci.2017.03.002

    Article  CAS  Google Scholar 

  4. Spoial A, Ficai D, Ficai D, Andronescu E (2020) molecules

  5. Karimi B, Ganji N, Pourshiani O, Thiel WR (2022) Progress in Materials Science Periodic mesoporous organosilicas (PMOs): From synthesis strategies to applications. Prog Mater Sci 125:100896. https://doi.org/10.1016/j.pmatsci.2021.100896

    Article  CAS  Google Scholar 

  6. Khaleque A, Alam M, Hoque M, et al. (2020) Zeolite synthesis from low-cost materials and environmental applications: A review. 2:. https://doi.org/10.1016/j.envadv.2020.100019

  7. Oliveira DM, Andrada AS (2019) de liberação controlada de fármacos). 65:170–179

  8. Gottuso A, Armetta F, Cataldo A et al. (2022) Functionalization of mesoporous silica nanoparticles through one-pot co-condensation in w/o emulsion. Microporous Mesoporous Mater 335:111833. https://doi.org/10.1016/J.MICROMESO.2022.111833

    Article  CAS  Google Scholar 

  9. Rao KS, El-Hami K, Kodaki T et al. (2005) A novel method for synthesis of silica nanoparticles. J Colloid Interface Sci 289:125–131. https://doi.org/10.1016/j.jcis.2005.02.019

    Article  CAS  Google Scholar 

  10. Gidey A, Rasheed A, Kanakka K et al. (2023) Chemosphere Rice husk waste into various template-engineered mesoporous silica materials for different applications: A comprehensive review on recent developments. Chemosphere 310:136843. https://doi.org/10.1016/j.chemosphere.2022.136843

    Article  CAS  Google Scholar 

  11. Castro Y, Vazquez NI, Gonzalez Z (2017) Synthesis of mesoporous silica nanoparticles by sol – gel as nanocontainer for future drug delivery applications. 6:139–145. https://doi.org/10.1016/j.bsecv.2017.03.002

  12. Danks AE, Hall SR, Schnepp Z (2016) Materials Horizons technique for materials synthesis. 91–112. https://doi.org/10.1039/c5mh00260e

  13. Miricioiu MG, Niculescu VC (2020) Fly ash, from recycling to potential raw material for mesoporous silica synthesis. Nanomaterials 10:. https://doi.org/10.3390/nano10030474

  14. Karande SD, Jadhav SA, Garud HB et al. (2021) Green and sustainable synthesis of silica nanoparticles. Nanotechnol Environ Eng 6:. https://doi.org/10.1007/s41204-021-00124-1

  15. Menon JU, Nguyen DX, Nguyen KT (2015) Development and characterization of stimulus-sensitive nano/microparticles for medical applications. https://doi.org/10.1007/978-3-319-15338-4_19

  16. Nada M, Jayalath S, Gillan EG et al. (2019) Zeolites and Mesoporous Silica: From Greener Synthesis to Surface Chemistry of Environmental and Biological Interactions. Chem Silica Zeolite-Based Mater 375–397. https://doi.org/10.1016/b978-0-12-817813-3.00020-1

  17. Barbosa TSB, Barros TRB, Barbosa TLA, Rodrigues MGF (2022) Green synthesis for MCM-41 and SBA-15 silica using the waste mother liquor. Silicon 14:6233–6243. https://doi.org/10.1007/s12633-021-01329-4

    Article  CAS  Google Scholar 

  18. Dai H, Yang J, Ma J et al. (2012) A green process for the synthesis of controllable mesoporous silica materials. Microporous Mesoporous Mater 147:281–285

    Article  Google Scholar 

  19. Aljuhani E, Hameed A, Al-Ahmed ZA et al. (2021) Eco-friendly green synthesis of functionalized mesoporous silica nanospheres for the determination of Al(III) ions in multiple samples of different kinds of water. Arab J Chem 14. https://doi.org/10.1016/j.arabjc.2021.103419

  20. Nguyen QNK, Yen NT, Hau ND, Tran HL (2020) Synthesis and Characterization of Mesoporous Silica SBA-15 and ZnO/SBA-15 Photocatalytic Materials from the Ash of Brickyards. J Chem 2020. https://doi.org/10.1155/2020/8456194

  21. Wei Y, Yang W, Yang Z (2022) An excellent universal catalyst support-mesoporous silica: Preparation, modification and applications in energy-related reactions. Int J Hydrog Energy 47:9537–9565. https://doi.org/10.1016/J.IJHYDENE.2022.01.048

    Article  CAS  Google Scholar 

  22. Simha P, Ramanathan A, Thawani B et al. (2019) Coal fly ash for the recovery of nitrogenous compounds from wastewater: Parametric considerations and system design. Arab J Chem 12:5049–5061. https://doi.org/10.1016/j.arabjc.2016.11.013

    Article  CAS  Google Scholar 

  23. Hamada H, Alattar A, Tayeh B et al. (2022) Sustainable application of coal bottom ash as fine aggregates in concrete: A comprehensive review. Case Stud Constr Mater 16:e01109. https://doi.org/10.1016/j.cscm.2022.e01109

    Article  Google Scholar 

  24. Arumugam A, Ponnusami V (2019) Biodiesel production from Calophyllum inophyllum oil a potential non-edible feedstock: An overview. Renew Energy 131. https://doi.org/10.1016/j.renene.2018.07.059

  25. Piwowar-Sulej K, Krzywonos M, Kwil I (2021) Environmental entrepreneurship —Bibliometric and content analysis of the subject literature based on H-Core. J Clean Prod 295. https://doi.org/10.1016/j.jclepro.2021.126277

  26. Malode SJ, Prabhu KK, Mascarenhas RJ et al. (2021) Recent advances and viability in biofuel production. Energy Convers Manag X 10:100070. https://doi.org/10.1016/j.ecmx.2020.100070

    Article  CAS  Google Scholar 

  27. Science E (2018) Utilization of construction and agricultural waste in Malaysia for development of Green Concrete: A Review Utilization of construction and agricultural waste in Malaysia for development of Green Concrete: A Review. IOP Conf Ser Earth Environ Sci 2018;140. https://doi.org/10.1088/1755-1315/140/1/012134

  28. Li Y, Zhou Y, Wang R et al. (2022) Removal of aflatoxin B1 from aqueous solution using amino-grafted magnetic mesoporous silica prepared from rice husk. Food Chem 132987. https://doi.org/10.1016/J.FOODCHEM.2022.132987

  29. Amran M, Fediuk R, Murali G et al. (2021) Rice husk ash-based concrete composites: a critical review of their properties and applications. Crystals 168: 1–30. https://doi.org/10.3390/cryst11020168

  30. Singh D, Nagabovanalli P, Sundara K et al. (2022) Journal of the Saudi Society of Agricultural Sciences An overview on the preparation of rice husk biochar, factors affecting its properties, and its agriculture application. J Saudi Soc Agric Sci 21:149–159. https://doi.org/10.1016/j.jssas.2021.07.005

    Article  Google Scholar 

  31. Goodman BA (2020) Utilization of waste straw and husks from rice production: A review. J Bioresour Bioprod 5:143–162. https://doi.org/10.1016/j.jobab.2020.07.001

    Article  CAS  Google Scholar 

  32. Le HT, Kraus M, Siewert K, Ludwig HM (2015) Effect of macro-mesoporous rice husk ash on rheological properties of mortar formulated from self-compacting high performance concrete. Constr Build Mater 80:225–235. https://doi.org/10.1016/j.conbuildmat.2015.01.079

    Article  Google Scholar 

  33. Jullaphan O, Witoon T, Chareonpanich M (2009) Synthesis of mixed-phase uniformly infiltrated SBA-3-like in SBA-15 bimodal mesoporous silica from rice husk ash. Mater Lett 63:1303–1306. https://doi.org/10.1016/j.matlet.2009.03.001

    Article  CAS  Google Scholar 

  34. Cheng Y, Lu M, Li J et al. (2012) Synthesis of MCM-22 zeolite using rice husk as a silica source under varying-temperature conditions. J Colloid Interface Sci 369:388–394. https://doi.org/10.1016/j.jcis.2011.12.024

    Article  CAS  Google Scholar 

  35. Sankar S, Sharma SK, Kaur N et al. (2015) Author’ s Accepted Manuscript. Ceram Int. https://doi.org/10.1016/j.ceramint.2015.11.172

  36. Kumar Rajanna S, Vinjamur M, Mukhopadhyay M (2015) Mechanism for formation of Hollow and Granular Silica Aerogel Microspheres from rice husk ash for drug delivery. J Non Cryst Solids 429:226–231. https://doi.org/10.1016/j.jnoncrysol.2015.09.015

    Article  CAS  Google Scholar 

  37. Liu Y, Wang Z, Zeng H et al. (2015) Photoluminescent mesoporous carbon-doped silica from rice husks. Mater Lett 142:280–282. https://doi.org/10.1016/j.matlet.2014.12.034

    Article  CAS  Google Scholar 

  38. Hui Y, Zhang Y, Li J et al. (2021) One-pot synthesis of spiro[indoline-3,2′-pyrrolidin]-ones catalyzed by mesoporous molecularsieve MCM-41 Tetrahedron 93:132283. https://doi.org/10.1016/J.TET.2021.13228

    Article  CAS  Google Scholar 

  39. Renuka NK, Praveen AK, Anas K (2013) Influence of CTAB molar ratio in tuning the texture of rice husk silica into MCM 41 and SBA-16. Mater Lett 109:70–73. https://doi.org/10.1016/j.matlet.2013.07.074

    Article  CAS  Google Scholar 

  40. Zhao P, Yin Y, Cheng W et al. (2021) Development of facile synthesized mesoporous carbon composite adsorbent for efficient CO2 capture. J CO2 Util 50:101612. https://doi.org/10.1016/J.JCOU.2021.101612

    Article  CAS  Google Scholar 

  41. Andrade C, Silva A, Urbina M et al. (2015) Low-cost mesoporous adsorbents amines-impregnated for CO2 capture. 597–609. https://doi.org/10.1007/s10450-015-9710-8

  42. Mahdi SN, Babu RDV, M S, Abdullah MMAB (2021) Mitigation of environmental problems using brick kiln rice husk ash in geopolymer composites for sustainable development. Curr Res Green Sustain Chem 4:100193. https://doi.org/10.1016/J.CRGSC.2021.100193

    Article  CAS  Google Scholar 

  43. Barbosa TR, Foletto EL, Dotto GL, Jahn SL (2018) Preparation of mesoporous geopolymer using metakaolin and rice husk ash as synthesis precursors and its use as potential adsorbent to remove organic dye from aqueous solutions. Ceram Int 44:416–423. https://doi.org/10.1016/j.ceramint.2017.09.193

    Article  CAS  Google Scholar 

  44. Kamari S, Ghorbani F (2020) Extraction of highly pure silica from rice husk as an agricultural by-product and its application in the production of magnetic mesoporous silica MCM–41. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-00637-w

  45. Salazar Hoyos LA, Faroldi BM, Cornaglia LM (2020) A coke-resistant catalyst for the dry reforming of methane based on Ni nanoparticles confined within rice husk-derived mesoporous materials. Catal Commun. https://doi.org/10.1016/j.catcom.2019.105898

  46. Zulfiqar U, Subhani T, Wilayat Husain S (2015) Towards tunable size of silica particles from rice husk. J Non Cryst Solids 429:61–69. https://doi.org/10.1016/j.jnoncrysol.2015.08.037

    Article  CAS  Google Scholar 

  47. Vanichvattanadecha C, Singhapong W, Jaroenworaluck A (2020) Different sources of silicon precursors influencing on surface characteristics and pore morphologies of mesoporous silica nanoparticles. Appl Surf Sci 513:145568. https://doi.org/10.1016/j.apsusc.2020.145568

    Article  CAS  Google Scholar 

  48. Siriworarat K, Deerattrakul V, Dittanet P, Kongkachuichay P (2017) Production of methanol from carbon dioxide using palladium-copper-zinc loaded on MCM-41: Comparison of catalysts synthesized from flame spray pyrolysis and sol-gel method using silica source from rice husk ash. J Clean Prod 142:1234–1243

    Article  CAS  Google Scholar 

  49. Saadati-Moshtaghin HR, Zonoz FM (2019) In situ preparation of CeO2 nanoparticles on the MCM-41 with magnetic core as a novel and efficient catalyst for the synthesis of substituted pyran derivatives. Inorg Chem Commun. https://doi.org/10.1016/j.inoche.2018.11.010

  50. Khir R, Pan Z (2019) Rice. Elsevier Inc

  51. Porrang S, Rahemi N, Davaran S et al. (2021) Preparation and in-vitro evaluation of mesoporous biogenic silica nanoparticles obtained from rice and wheat husk as a biocompatible carrier for anti-cancer drug delivery. Eur J Pharm Sci 163:105866. https://doi.org/10.1016/J.EJPS.2021.105866

    Article  CAS  Google Scholar 

  52. Cui J, Sun H, Luo Z et al. (2015) Preparation of low surface area SiO2 microsphere from wheat husk ash with a facile precipitation process. Mater Lett 156:42–45. https://doi.org/10.1016/j.matlet.2015.04.134

    Article  CAS  Google Scholar 

  53. Memon SA, Wahid I, Khan MK et al. (2018) Environmentally friendly utilization of wheat straw ash in cement-based composites. Sustain 10:1–21. https://doi.org/10.3390/su10051322

    Article  CAS  Google Scholar 

  54. Bheel N, Awoyera P, Shar IA et al. (2021) Synergic effect of millet husk ash and wheat straw ash on the fresh and hardened properties of Metakaolin-based self-compacting geopolymer concrete. Case Stud Constr Mater 15:e00729. https://doi.org/10.1016/J.CSCM.2021.E00729

    Article  Google Scholar 

  55. Ali IO, Thabet MS, El-Nasser KS et al. (2012) Synthesis of nanosized ZSM-5 zeolite from rice straw using lignin as a template: Surface-modified zeolite with quaternary ammonium cation for removal of chromium from aqueous solution. Microporous Mesoporous Mater 160:97–105. https://doi.org/10.1016/j.micromeso.2012.04.020

    Article  CAS  Google Scholar 

  56. Miller A, Kruichak J, Mills M, Wang Y (2015) Iodide uptake by negatively charged clay interlayers. J Environ Radioact 147:108–114. https://doi.org/10.1016/j.jenvrad.2015.05.024

    Article  CAS  Google Scholar 

  57. Ma C, Ruan R (2013) Applied Clay Science Adsorption of toluene on mesoporous materials from waste solar panel as silica source. Appl Clay Sci 80–81:196–201. https://doi.org/10.1016/j.clay.2013.03.017

    Article  CAS  Google Scholar 

  58. Adjdir M, Ali-Dahmane T, Friedrich F et al. (2009) The synthesis of Al-MCM-41 from volclay - A low-cost Al and Si source. Appl Clay Sci. https://doi.org/10.1016/j.clay.2008.11.009

  59. Adjdir M, Bendeddouche CK, Benhaoua H et al. (2015) Increasing the efficiency of silicon and aluminum extraction from Volclay by a water iteration treatment for the synthesis of MCM-41 nanomaterials. Comptes Rendus Chim. https://doi.org/10.1016/j.crci.2014.07.003

  60. Berti D, Slowey NC, Yancey TE, Deng Y (2022) Rare earth nanominerals in bentonite deposits of the Eocene Texas coastal plains. Appl Clay Sci 216:106373. https://doi.org/10.1016/j.clay.2021.106373

    Article  CAS  Google Scholar 

  61. Mamaghani FAA, Salem A, Salem S (2022) Role of aluminum resource in conversion of bentonite into low silica-based zeolites via fusion technology. Mater Lett 318:132168. https://doi.org/10.1016/J.MATLET.2022.132168

    Article  CAS  Google Scholar 

  62. Rasaie A, Sabzehmeidani MM, Ghaedi M et al. (2021) Removal of herbicide paraquat from aqueous solutions by bentonite modified with mesoporous silica. Mater Chem Phys 262:124296. https://doi.org/10.1016/J.MATCHEMPHYS.2021.124296

    Article  CAS  Google Scholar 

  63. Yang H, Deng Y, Du C, Jin S (2010) Novel synthesis of ordered mesoporous materials Al-MCM-41 from bentonite. Appl Clay Sci 47:351–355. https://doi.org/10.1016/j.clay.2009.11.050

    Article  CAS  Google Scholar 

  64. Nuhoǧlu Ç, Tapan M, Okutan M et al. (2014) Resistivity, ESR, and radiation shielding properties of the volcanic rock materials. Adv Condens Matter Phys 2014: https://doi.org/10.1155/2014/609161

  65. Mohseni-Bandpei A, Eslami A, Kazemian H et al. (2020) A high density 3-aminopropyltriethoxysilane grafted pumice-derived silica aerogel as an efficient adsorbent for ibuprofen: Characterization and optimization of the adsorption data using response surface methodology. Environ Technol Innov 18:100642. https://doi.org/10.1016/J.ETI.2020.100642

    Article  Google Scholar 

  66. Mourhly A, Khachani M, Hamidi AEL et al. (2015) The Synthesis and Characterization of Low-Cost Mesoporous Silica SiO2 from Local Pumice Rock. Nanomater Nanotechnol 5:35. https://doi.org/10.5772/62033

    Article  CAS  Google Scholar 

  67. Kanhar AH, Chen S, Wang F (2020) Incineration Fly Ash and Its Treatment to Possible Utilization: A Review. Energies 13(24), 6681; https://doi.org/10.3390/en13246681

  68. Li D, Jiang K, Jiang X et al. (2022) Improving the A/S ratio of pretreated coal fly ash by a two-stage roasting for Bayer alumina production. Fuel 310:122478. https://doi.org/10.1016/J.FUEL.2021.122478

    Article  CAS  Google Scholar 

  69. Ahmaruzzaman M (2010) A review on the utilization of fly ash. Prog Energy Combust Sci 36:327–363. https://doi.org/10.1016/j.pecs.2009.11.003

    Article  CAS  Google Scholar 

  70. Li D, Min H, Jiang X et al. (2013) One-pot synthesis of Aluminum-containing ordered mesoporous silica MCM-41 using coal fly ash for phosphate adsorption. J Colloid Interface Sci 404:42–48. https://doi.org/10.1016/j.jcis.2013.04.018

    Article  CAS  Google Scholar 

  71. Wang AB, Zhou Y, Li L, Xu H (2017) Novel synthesis of cyano-functionalized mesoporous silica nanospheres (MSN) from coal fly ash for removal of toxic metals from wastewater. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2017.10.063

  72. Castillo X, Pizarro J, Ortiz C et al. (2018) A cheap mesoporous silica from fly ash as an outstanding adsorbent for sulfate in water. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2018.06.014

  73. Yuan N, Cai H, Liu T et al. (2019) Adsorptive removal of methylene blue from aqueous solution using coal fly ash-derived mesoporous silica material. Adsorpt Sci Technol 37:333–348. https://doi.org/10.1177/0263617419827438

    Article  CAS  Google Scholar 

  74. Chatterjee A, Basu JK, Jana AK (2019) Alumina-silica nano-sorbent from plant fly ash and scrap aluminium foil in removing nickel through adsorption. Powder Technol 354:792–803. https://doi.org/10.1016/j.powtec.2019.06.035

    Article  CAS  Google Scholar 

  75. Zhang S, Ravi S, Lee YR et al. (2019) Fly ash-derived mesoporous silica foams for CO2 capture and aqueous Nd3+ adsorption. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2018.12.024

  76. Li J, Shi Y, Fu X et al. (2019) Hierarchical ZSM-5 based on fly ash for the low-temperature purification of odorous volatile organic compound in cooking fumes. React Kinet Mech Catal. https://doi.org/10.1007/s11144-019-01633-6

  77. Utama PS, Bahri S, Prawiranegara BA et al. (2022) Synthesis of synthetic amorphous silica powder from palm oil mill fly ash extract by carbon dioxide impregnation. Mater Today Proc. https://doi.org/10.1016/J.MATPR.2022.03.143

  78. Brochocka A, Nowak A, Panek R, Franus W (2019) The effects of textural parameters of zeolite and silica materials on the protective and functional properties of polymeric nonwoven composites. Appl Sci 9: https://doi.org/10.3390/app9030515

  79. Lee YR, Soe JT, Zhang S et al. (2017) Synthesis of nanoporous materials via recycling coal fly ash and other solid wastes: A mini review. Chem Eng J 317:821–843. https://doi.org/10.1016/j.cej.2017.02.124

    Article  CAS  Google Scholar 

  80. Zhou C, Gao Q, Luo W et al. (2015) Preparation, characterization and adsorption evaluation of spherical mesoporous Al-MCM-41 from coal fly ash. J Taiwan Inst Chem Eng 52:147–157. https://doi.org/10.1016/j.jtice.2015.02.014

    Article  CAS  Google Scholar 

  81. Argiz C, Moragues A, Menéndez E (2018) Use of ground coal bottom ash as cement constituent in concretes exposed to chloride environments. J Clean Prod 170:25–33. https://doi.org/10.1016/j.jclepro.2017.09.117

    Article  CAS  Google Scholar 

  82. Hower JC, Fu B, Dai S (2020) Geochemical partitioning from pulverized coal to fly ash and bottom ash. Fuel 279:118542. https://doi.org/10.1016/J.FUEL.2020.118542

    Article  CAS  Google Scholar 

  83. Panek R, Wdowin M, Franus W et al. (2017) Fly ash-derived MCM-41 as a low-cost silica support for polyethyleneimine in post-combustion CO2capture. J CO2 Util 22:81–90. https://doi.org/10.1016/j.jcou.2017.09.015

    Article  CAS  Google Scholar 

  84. Ćwik A, Casanova I, Rausis K, Zarȩbska K (2019) Utilization of high-calcium fly ashes through mineral carbonation: The cases for Greece, Poland and Spain. J CO2 Util 32:155–162. https://doi.org/10.1016/J.JCOU.2019.03.020

    Article  Google Scholar 

  85. Majchrzak-Kucȩba I, Nowak W (2011) Characterization of MCM-41 mesoporous materials derived from polish fly ashes. Int J Min Process 101:100–111. https://doi.org/10.1016/j.minpro.2011.09.002

    Article  CAS  Google Scholar 

  86. Nguyen Thi N, Phi Hong T, Bui Truong S (2019) Utilizing Coal Bottom Ash from Thermal Power Plants in Vietnam as Partial Replacement of Aggregates in Concrete Pavement. J Eng (United Kingdom) 2019: https://doi.org/10.1155/2019/3903097

  87. Lakhiar MT, Bai Y, Wong LS et al. (2022) Mechanical and durability properties of epoxy mortar incorporating coal bottom ash as filler. Constr Build Mater 315:125677. https://doi.org/10.1016/J.CONBUILDMAT.2021.125677

    Article  CAS  Google Scholar 

  88. Kasaniya M, Thomas MDA, Moffatt EG (2021) Efficiency of natural pozzolans, ground glasses and coal bottom ashes in mitigating sulfate attack and alkali-silica reaction. Cem Concr Res 149:106551. https://doi.org/10.1016/J.CEMCONRES.2021.106551

    Article  CAS  Google Scholar 

  89. Churchill EV, Amirkhanian SN (1999) Coal ash utilization in asphalt concrete mixtures. J Mater Civ Eng. https://doi.org/10.1061/(asce)0899-1561(1999)11:4(295)

  90. Singh M, Siddique R (2015) Effect of coal bottom ash as partial replacement of sand on workability and strength properties of concrete. J Clean Prod 72:1–2. https://doi.org/10.1016/j.jclepro.2015.08.001

    Article  Google Scholar 

  91. Vu DH, Bui HB, Bui XN et al. (2020) A novel approach in adsorption of heavy metal ions from aqueous solution using synthesized MCM-41 from coal bottom ash. Int J Environ Anal Chem 100:1226–1244. https://doi.org/10.1080/03067319.2019.1651300

    Article  CAS  Google Scholar 

  92. Alam Q, Hendrix Y, Thijs L et al. (2019) Novel low temperature synthesis of sodium silicate and ordered mesoporous silica from incineration bottom ash. J Clean Prod 211:874–883. https://doi.org/10.1016/j.jclepro.2018.11.173

    Article  CAS  Google Scholar 

  93. Kim B, Prezzi M, Salgado R (2005) Geotechnical Properties of Fly and Bottom Ash Mixtures for Use in Highway Embankments. J Geotech Geoenviron Eng 131:914–924. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:7(914)

    Article  CAS  Google Scholar 

  94. Laharto PBF, Anggraini APK, Fauzany US et al. (2019) Synthesis of mesoporous silica from bottom ash waste for ch4 adsorption. Mater Sci Forum 964 MSF:130–135. https://doi.org/10.4028/www.scientific.net/MSF.964.130

  95. Baite E, Messan A, Hannawi K et al. (2016) Physical and transfer properties of mortar containing coal bottom ash aggregates from Tefereyre Constr Build Mater 125:919–926. https://doi.org/10.1016/j.conbuildmat.2016.08.117

    Article  CAS  Google Scholar 

  96. Chandrasekar G, You K, Ahn J, Ahn W (2008) Synthesis of hexagonal and cubic mesoporous silica using power plant bottom ash. 111:455–462. https://doi.org/10.1016/j.micromeso.2007.08.019

  97. Yuan N, Zhang X, Sun L et al. (2019) Circulating fluidized bed fly ash-derived mesoporous silica adsorbent for the adsorptive removal of malachite green. Desalin Water Treat 161:387–397. https://doi.org/10.5004/dwt.2019.24326

    Article  CAS  Google Scholar 

  98. Zhou C, Yan C, Zhao J et al. (2016) Rapid synthesis of morphology-controlled mesoporous silica nanoparticles from silica fume. J Taiwan Inst Chem Eng 62:307–312. https://doi.org/10.1016/J.JTICE.2016.01.031

    Article  Google Scholar 

  99. Zhu W, Li X, Wu D et al. (2016) Microporous and Mesoporous Materials Synthesis of spherical mesoporous silica materials by pseudomorphic transformation of silica fume and its Pb 2 þ removal properties. 222:192–201. https://doi.org/10.1016/j.micromeso.2015.10.013

  100. Wei F, Liu Z, Lu J, Liu Z (2010) Microporous and Mesoporous Materials Synthesis of mesoporous MCM-48 using fumed silica and mixed surfactants. Microporous Mesoporous Mater 131:224–229. https://doi.org/10.1016/j.micromeso.2009.12.027

    Article  CAS  Google Scholar 

  101. Zhu W, Li X, Wu D et al. (2016) Synthesis of spherical mesoporous silica materials by pseudomorphic transformation of silica fume and its Pb2+ removal properties. Microporous Mesoporous Mater 222:192–201. https://doi.org/10.1016/j.micromeso.2015.10.013

    Article  CAS  Google Scholar 

  102. He H, Meng X, Yue Q et al. (2021) Thiol-ene click chemistry synthesis of a novel magnetic mesoporous silica/chitosan composite for selective Hg(II) capture and high catalytic activity of spent Hg(II) adsorbent. Chem Eng J 405:126743. https://doi.org/10.1016/J.CEJ.2020.126743

    Article  CAS  Google Scholar 

  103. Zhou J, Lan T, Li T et al. (2022) Highly efficient capture of iodine in spent fuel reprocessing off-gas by novelly porous copper-doped silica zeolites. Sep Purif Technol 290:120895. https://doi.org/10.1016/J.SEPPUR.2022.120895

    Article  CAS  Google Scholar 

  104. Shen S, Wu W, Guo K, Chen J (2007) Low-cost preparation of mesoporous silica with high pore volume. J Univ Sci Technol Beijing Min Met Mater (Eng Ed) 14:369–372. https://doi.org/10.1016/S1005-8850(07)60073-5

    Article  CAS  Google Scholar 

  105. Dhokte AO, Khillare SL, Lande MK, Arbad BR (2011) Synthesis, characterization of mesoporous silica materials from waste coal fly ash for the classical Mannich reaction. J Ind Eng Chem 17:742–746. https://doi.org/10.1016/j.jiec.2011.05.033

    Article  CAS  Google Scholar 

  106. Uhlig H, Muenster T, Kloess G et al. (2018) Synthesis of MCM-48 granules with bimodal pore systems via pseudomorphic transformation of porous glass. Microporous Mesoporous Mater 257:185–192. https://doi.org/10.1016/J.MICROMESO.2017.08.033

    Article  CAS  Google Scholar 

  107. Hwang J, Lee JH, Chun J (2021) Facile approach for the synthesis of spherical mesoporous silica nanoparticles from sodium silicate. Mater Lett 283:128765. https://doi.org/10.1016/j.matlet.2020.128765

    Article  CAS  Google Scholar 

  108. Bing L, Zhongying Z, Biao T et al. (2018) Comprehensive Utilization of Iron Tailings in China. IOP Conf Ser Earth Environ Sci 2018;199. https://doi.org/10.1088/1755-1315/199/4/042055

  109. Lu C, Yang H, Wang J et al. (2020) Utilization of iron tailings to prepare high-surface area mesoporous silica materials. Sci Total Environ 736:139483. https://doi.org/10.1016/J.SCITOTENV.2020.139483

    Article  CAS  Google Scholar 

  110. Sangchoom W, Mokaya R (2012) High temperature synthesis of exceptionally stable pure silica MCM-41 and stabilisation of calcined mesoporous silicas via refluxing in water. J Mater Chem. https://doi.org/10.1039/c2jm33837h

  111. Zhang Z, Wang Y, Wang J et al. (2020) Preparation and characterization of glass-ceramics from oil shale ash: Effect of basicity and sintering temperature on crystallization behavior, properties, and environmental risk. Mater Chem Phys 249:123012. https://doi.org/10.1016/J.MATCHEMPHYS.2020.123012

    Article  CAS  Google Scholar 

  112. Meng Y, Yan Y, Wu X et al. (2020) Synthesis and functionalization of cauliflower-like mesoporous siliceous foam materials from oil shale waste for post-combustion carbon capture. J CO2 Util 40:101199. https://doi.org/10.1016/J.JCOU.2020.101199

    Article  CAS  Google Scholar 

  113. Wei H, Zhang Y, Wang F et al. (2018) Experimental research on resilient modulus of silty clay modified by oil shale ash and fly ash after freeze-thaw cycles. Appl Sci 8: https://doi.org/10.3390/app8081298

  114. Gao GM, Xu XC, Zou HF et al. (2010) Microstructural and physical properties of silica aerogels based on oil shale ash. Powder Technol 202:137–142. https://doi.org/10.1016/j.powtec.2010.04.028

    Article  CAS  Google Scholar 

  115. Gao GM, Liu DR, Zou HF et al. (2010) Preparation of silica aerogel from oil shale ash by fluidized bed drying. Powder Technol 197:283–287. https://doi.org/10.1016/j.powtec.2009.10.005

    Article  CAS  Google Scholar 

  116. Shefferson RP, Kull T, Tali K (2008) Mycorrhizal interactions of orchids colonizing Estonian mine tailings hills. Am J Bot 95:156–164. https://doi.org/10.3732/ajb.95.2.156

    Article  Google Scholar 

  117. Konist A, Anthony EJ, Neshumayev D et al. (2020) Mineral and heavy metal composition of oil shale ash from oxyfuel combustion. ACS Omega 5:32498–32506. https://doi.org/10.1021/acsomega.0c04466

    Article  CAS  Google Scholar 

  118. Zhang Z, Wang J, Liu L, Shen B (2019) Preparation and characterization of glass-ceramics via co-sintering of coal fly ash and oil shale ash-derived amorphous slag. Ceram Int 45:20058–20065. https://doi.org/10.1016/J.CERAMINT.2019.06.269

    Article  CAS  Google Scholar 

  119. Gao GM, Miao LN, Ji GJ et al. (2009) Preparation and characterization of silica aerogels from oil shale ash. Mater Lett 63:2721–2724. https://doi.org/10.1016/j.matlet.2009.09.053

    Article  CAS  Google Scholar 

  120. Tomic T, Schneider DR (2017) Municipal solid waste system analysis through energy consumption and return approach. J Environ Manage 203:973–87. https://doi.org/10.1016/j.jenvman.2017.06.070

  121. Casanova S, Silva RV, de Brito J, Pereira MFC (2021) Mortars with alkali-activated municipal solid waste incinerator bottom ash and fine recycled aggregates. J Clean Prod 289:125707. https://doi.org/10.1016/J.JCLEPRO.2020.125707

    Article  CAS  Google Scholar 

  122. Johnson CA, Brandenberger S, Baccini P (1995) Acid neutralizing capacity of municipal waste incinerator bottom ash. Environ Sci Technol 29:142–147. https://doi.org/10.1021/es00001a018

    Article  CAS  Google Scholar 

  123. Bagchi SK, Rao PS, Mallick N (2015) Development of an oven drying protocol to improve biodiesel production for an indigenous chlorophycean microalga Scenedesmus sp. Bioresour Technol 180:207–213. https://doi.org/10.1016/j.biortech.2014.12.092

    Article  CAS  Google Scholar 

  124. Goh CK, Valavan SE, Low TK, Tang LH (2016) Effects of different surface modification and contents on municipal solid waste incineration fly ash/epoxy composites. Waste Manag 58:309–315. https://doi.org/10.1016/j.wasman.2016.05.027

    Article  CAS  Google Scholar 

  125. Chiang YW, Ghyselbrecht K, Santos RM et al. (2012) Synthesis of zeolitic-type adsorbent material from municipal solid waste incinerator bottom ash and its application in heavy metal adsorption. Catal Today 190:23–30. https://doi.org/10.1016/j.cattod.2011.11.002

    Article  CAS  Google Scholar 

  126. Liu Z-S, Li W-K, Huang C-Y (2014) Synthesis of mesoporous silica materials from municipal solid waste incinerator bottom ash. Waste Manag 34:893–900. https://doi.org/10.1016/j.wasman.2014.02.016

    Article  CAS  Google Scholar 

  127. Oyebode JO, Mbagwu VN, Onitiri MA, Adewumi OO (2020) Effect of iron ore tailings particle sizes on the thermal properties of epoxy and polypropylene matrix composites. FUOYE J Eng Technol 5:154–158. https://doi.org/10.46792/fuoyejet.v5i2.507

    Article  Google Scholar 

  128. Hu L, He Z, Zhang S (2020) Sustainable use of rice husk ash in cement-based materials: Environmental evaluation and performance improvement. J Clean Prod 264:121744. https://doi.org/10.1016/j.jclepro.2020.121744

    Article  CAS  Google Scholar 

  129. Yao ZT, Ji XS, Sarker PK et al. (2015) A comprehensive review on the applications of coal fly ash. Earth-Sci Rev 141:105–121. https://doi.org/10.1016/j.earscirev.2014.11.016

  130. Bananezhad B, Islami MR, Ghonchepour E et al. (2019) Bentonite clay as an efficient substrate for the synthesis of the super stable and recoverable magnetic nanocomposite of palladium (Fe3O4/Bentonite-Pd) Polyhedron 162:192–200. https://doi.org/10.1016/j.poly.2019.01.054

    Article  CAS  Google Scholar 

  131. Miyah Y, Benjelloun M, Lahrichi A et al. (2021) Highly-efficient treated oil shale ash adsorbent for toxic dyes removal: Kinetics, isotherms, regeneration, cost analysis and optimization by experimental design. J Environ Chem Eng 9:106694. https://doi.org/10.1016/j.jece.2021.106694

    Article  CAS  Google Scholar 

  132. Arumugam A, Sankaranarayanan P (2020) Biodiesel production and parameter optimization: An approach to utilize residual ash from sugarcane leaf, a novel heterogeneous catalyst, from Calophyllum inophyllum oil. Renew Energy 153. https://doi.org/10.1016/j.renene.2020.02.101

  133. Adamczyk Z, Komorek J, Białecka B et al. (2020) Assessment of the potential of polish fly ashes as a source of rare earth elements. Ore Geol Rev 124:103638. https://doi.org/10.1016/j.oregeorev.2020.103638

    Article  Google Scholar 

  134. Amado CM, Minahk CJ, Cilli E et al. (2019) Jo ur l P re. BBA - Biomembr 183135. https://doi.org/10.1016/j.bbamem.2019.183135

  135. Seliem MK, Komarneni S, Abu Khadra MR (2016) Phosphate removal from solution by composite of MCM-41 silica with rice husk: Kinetic and equilibrium studies. Microporous Mesoporous Mater 224:51–57. https://doi.org/10.1016/j.micromeso.2015.11.011

    Article  CAS  Google Scholar 

  136. Purwaningsih H, Raharjo S, Pratiwi VM et al. (2019) Porous silica nanomaterial derived from organic waste rice husk as highly potential drug delivery material. Mater Sci Forum 964 MSF:88–96. https://doi.org/10.4028/www.scientific.net/MSF.964.88

  137. Misran H, Singh R, Begum S, Yarmo MA (2007) Processing of mesoporous silica materials (MCM-41) from coal fly ash. J Mater Process Technol 186:8–13. https://doi.org/10.1016/j.jmatprotec.2006.10.032

    Article  CAS  Google Scholar 

  138. Chandrasekar G, You KS, Ahn JW, Ahn WS (2008) Synthesis of hexagonal and cubic mesoporous silica using power plant bottom ash. Microporous Mesoporous Mater 111:455–462. https://doi.org/10.1016/j.micromeso.2007.08.019

    Article  CAS  Google Scholar 

  139. He Y, Zhang L, An X et al. (2019) Microwave assistant rapid synthesis MCM-41-NH2 from fly ash and Cr(VI) removal performance. Environ Sci Pollut Res 26:31463–31477. https://doi.org/10.1007/s11356-019-06255-y

    Article  CAS  Google Scholar 

  140. Zhu W, Zhou Y, Ma W et al. (2013) Using silica fume as silica source for synthesizing spherical ordered mesoporous silica. Mater Lett 92:129–131. https://doi.org/10.1016/j.matlet.2012.10.044

    Article  CAS  Google Scholar 

  141. Selvarajan V, Obuobi S, Ee PLR (2020) Silica nanoparticles—A versatile tool for the treatment of bacterial infections. Front Chem 8:1–16. https://doi.org/10.3389/fchem.2020.00602

    Article  CAS  Google Scholar 

  142. Zhou H, Bhattarai R, Li Y et al. (2022) Towards sustainable coal industry: Turning coal bottom ash into wealth. Sci Total Environ 804:149985. https://doi.org/10.1016/j.scitotenv.2021.149985

    Article  CAS  Google Scholar 

  143. Sakhrieh A, Hamdan M (2016) Utilization of Jordanian Oil Shale

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by SERB (Science & Engineering Research Board), INDIA (Grant no. ECR/2017/001038/2017-2018) to carry out this review work

Funding

All of the sources of funding for the work described in this publication are acknowledged below: We acknowledge the financial support provided by the Research board, INDIA (Grant no. SERB SB/EMEQ-006/2014 & ECR/2017/001038/2017-20) in accompanying us to complete the work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Srinivasan or A. Arumugam.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saravanan, M., Sudalai, S., Dharaneesh, A.B. et al. An extensive review on mesoporous silica from inexpensive resources: properties, synthesis, and application toward modern technologies. J Sol-Gel Sci Technol 105, 1–29 (2023). https://doi.org/10.1007/s10971-022-05983-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05983-x

Keywords

Navigation