Skip to main content
Log in

Microwave assistant rapid synthesis MCM-41-NH2 from fly ash and Cr(VI) removal performance

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Synthesis of silicon materials from fly ash is an ecologically justified process aimed at the transformation of energy sector waste-fly ash into mesoporous silicon material of broad possible application field. In this study, the MCM-41-NH2 was successfully synthesized from industrial solid waste fly ash via a facile and fast process of alkali fusion method under the assistant of microwave. Due to the employ of microwave, the aging time was controlled within 30 min, which was significantly shorter than that of traditional hydrothermal method (48–72 h). And, the obtained MCM-41-NH2 was shown an excellent performance to remove Cr(VI) from solution under the investigation of fixed-bed column. The maximum adsorption capacity for Cr(VI) was 53.77 mg/g. Additionally, the effect of initial concentration, flow rate, bed height, and pH on Cr(VI) removal were investigated, and the models of Thomas and Adams–Bohart were applied to predict the experiment data; the correlation coefficients (R2) of Thomas model under the investigated conditions were all close to 1. Furthermore, the adsorbent was characterized by N2 adsorption–desorption isotherm, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), zeta potential, ultraviolet-visible spectroscopy (UV-vis), X-ray photoelectron spectroscopy (XPS), and NH3-Temperature Programmed Desorption (NH3-TPD). The results showed that amino groups play an important role in the adsorption process. Cr(VI) was firstly adsorbed on the surface of the MCM-41-NH2, and then some of the adsorbed Cr(VI) were reduced to Cr(III) by the release of the protons of the ammonium. The information showed that MCM-41-NH2 could be an effective and low-cost sorbent for removing Cr(VI) from wastewater. Furthermore, recycling experiments showed that the spent adsorbent had high catalytic performance for methyl mercaptan (CH3SH).

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9

Similar content being viewed by others

References

  • Annenkov VV, Danilovtseva EN, Pal'shin VA, Zelinskiy SN, Chebykin EР, Gak VY, Shendrik RY (2017) Luminescent siliceous materials based on sodium silicate, organic polymers and silicon analogs. Mater Chem Phys 185:65–72

    Article  CAS  Google Scholar 

  • Archariyapanyakul P, Pangkumhang B, Khamdahsag P, Tanboonchuy V (2017) Synthesis of silica-supported nanoiron for Cr (VI) removal: application of Box-Behnken statistical design (BBD). Sains Malays 46(4):655–665

    Article  CAS  Google Scholar 

  • Arim AL, Neves K, Quina MJ, Gando-Ferreira LM (2018) Experimental and mathematical modelling of Cr (III) sorption in fixed-bed column using modified pine bark. J Clean Prod 183:272–281

    Article  CAS  Google Scholar 

  • Asghari E, Haghighi M, Rahmani F (2016) CO2, oxidative dehydrogenation of ethane to ethylene over Cr/MCM-41 nanocatalyst synthesized via hydrothermal/impregnation methods: influence of chromium content on catalytic properties and performance. J Mol Catal A-Chem 418-419:115–124

    Article  CAS  Google Scholar 

  • Asl SMH, Ahmadi M, Ghiasvand M (2013) Artificial neural network (ANN) approach for modeling of Cr(VI) adsorption from aqueous solution by zeolite prepared from raw fly ash (ZFA). J Ind Eng Chem 19(3):1044–1055

  • Asl SMH, Masomi M, Hosseini M, Javadian H, Ruiz M, Sastre AM (2017) Synthesis of hydrous iron oxide/aluminum hydroxide composite loaded on coal fly ash as an effective mesoporous and low-cost sorbent for Cr(VI) sorption: fuzzy logic modeling. Process Saf Eenviron 107:153–167

    Article  CAS  Google Scholar 

  • Bae S, Taylor R, Kilcoyne D, Moon J, Monteiro P (2017) Effects of incorporating high-volume fly ash into tricalcium silicate on the degree of silicate polymerization and aluminum substitution for silicon in calcium silicate hydrate. Materials. 10(2):131

    Article  CAS  Google Scholar 

  • Bai GH, Li PC, Xu P, Chen SL (2011) 4A-molecular sieve synthesis by microwave heating with silicon and aluminum materials produced from the coal fly ash. Mater Sci Forum Trans Tech Publications 675:219–222

    Article  CAS  Google Scholar 

  • Barrera-Díaz CE, Lugo-Lugo V, Bilyeu B (2012) A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J Hazard Mater 223:1–12

    Article  CAS  Google Scholar 

  • Biller P, Sharma BK, Kunwar B, Ross AB (2015) Hydroprocessing of bio-crude from continuous hydrothermal liquefaction of microalgae. Fuel. 159:197–205

    Article  CAS  Google Scholar 

  • Bois L, Bonhommé A, Ribes A, Pais B, Raffin G, Tessier F (2003) Functionalized silica for heavy metal ions adsorption. Colloid Surface A 221(1–3):221–230

    Article  CAS  Google Scholar 

  • Bora DK (2015) Fabrication of silicon doped hematite photoelectrode with enhanced photocurrent density via solution processing of an in-situ TEOS modified precursor. Mater Sci Semicond Process 31:728–738

    Article  CAS  Google Scholar 

  • Castillo X, Pizarro J, Ortiz C, Cid H, Flores M, De Canck E, Van Der Voort P (2018) A cheap mesoporous silica from fly ash as an outstanding adsorbent for sulfate in water. Microporous Mesoporous Mater 272:184–192

    Article  CAS  Google Scholar 

  • Chen H, Peng YP, Chen KF, Lai CH, Lin YC (2016) Rapid synthesis of Ti-MCM-41 by microwave-assisted hydrothermal method towards photocatalytic degradation of oxytetracycline. J Environ Sci-China 44:76–87

    Article  Google Scholar 

  • Chowdhury SR, Yanful EK, Pratt AR (2012) Chemical states in XPS and Raman analysis during removal of Cr (VI) from contaminated water by mixed maghemite–magnetite nanoparticles. J Hazard Mater 235:246–256

    Article  CAS  Google Scholar 

  • Chuang KH, Lu CH, Chen JC, Wey MY (2018) Reuse of bottom ash and fly ash from mechanical-bed and fluidized-bed municipal incinerators in manufacturing lightweight aggregates. Ceram Int 44(11):12691–12696

    Article  CAS  Google Scholar 

  • Coşkun R, Er E, Delibaş A (2018) Synthesis of novel resin containing carbamothiolylimidamide group and application for Cr(VI) removal. Polym Bull 75(3):963–983

    Article  CAS  Google Scholar 

  • Demiral H, Gündüzoğlu G (2010) Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse. Bioresour Technol 101(6):1675–1680

    Article  CAS  Google Scholar 

  • Dragan ES, Humelnicu D, Dinu MV, Olariu RI (2017) Kinetics, equilibrium modeling, and thermodynamics on removal of Cr (VI) ions from aqueous solution using novel composites with strong base anion exchanger microspheres embedded into chitosan/poly (vinyl amine) cryogels. Chem Eng J 330:675–691

    Article  CAS  Google Scholar 

  • Fang W, Jiang X, Luo H, Geng J (2018) Synthesis of graphene/SiO2@ polypyrrole nanocomposites and their application for Cr(VI) removal in aqueous solution. Chemosphere. 197:594–602

    Article  CAS  Google Scholar 

  • Ferreira PPL, Braga RM, Teodoro NMA, Melo VRM, Melo DMA (2015) Adsorption of Cu2+ and Cr3+ in waste water using bagasse fly ash. Cerâmica 61:1678–4553

  • Ghosh PK (2009) Hexavalent chromium [Cr(VI)] removal by acid modified waste activated carbons. J Hazard Mater 171(1–3):116–122

    Article  CAS  Google Scholar 

  • Han F, Wang L, Li Y (2017) Application of Thermally Modified Fly Ash for Adsorption of Ni(II) and Cr(III) from Aqueous Solution: Equilibrium, Kinetic, and Thermodynamic Studies. Environ Eng Sci 34(7):508–515

  • Hasan SH, Srivastava P, Ranjan D, Talat M (2009) Biosorption of Cr(VI) from aqueous solution using A. hydrophila in up-flow column: optimization of process variables. Appl Microbiol Biotechnol 83(3):567–577

    Article  CAS  Google Scholar 

  • He DD (2017) Enhanced activity and stability of Sm-doped HZSM-5 zeolite catalysts for catalytic methyl mercaptan (CH3SH) decomposition. Chem Eng J 317:60–69

    Article  CAS  Google Scholar 

  • He D, Zhang L, Zhao Y, Mei Y, Chen D, He S, Luo Y (2018) Recycling spent Cr adsorbents as catalyst for eliminating methylmercaptan. Environ Sci Technol 52(6):3669–3675

    Article  CAS  Google Scholar 

  • Jiang K, Chi T, Li T, Zheng G, Fan L, Liu Y, Shao J (2017) A smart pH-responsive nano-carrier as a drug delivery system for the targeted delivery of ursolic acid: suppresses cancer growth and metastasis by modulating P53/MMP-9/PTEN/CD44 mediated multiple signaling pathways. Nanoscale. 9(27):9428–9439

    Article  CAS  Google Scholar 

  • Karaca H, Altıntığ E, Türker D, Teker M (2018) An evaluation of coal fly ash as an adsorbent for the removal of methylene blue from aqueous solutions: kinetic and thermodynamic studies. J Dispers Sci Technol 39(12):1800–1807

    Article  CAS  Google Scholar 

  • Karthik C, Barathi S, Pugazhendhi A, Ramkumar VS, Thi NBD, Arulselvi PI (2017) Evaluation of Cr (VI) reduction mechanism and removal by Cellulosimicrobium funkei strain AR8, a novel haloalkaliphilic bacterium. J Hazard Mater 333:42–53

    Article  CAS  Google Scholar 

  • Kavianinia I, Plieger PG, Kandile NG, Harding DR (2012) New hydrogels based on symmetrical aromatic anhydrides: synthesis, characterization and metal ion adsorption evaluation. Carbohydr Polym 87(1):881–893

    Article  CAS  Google Scholar 

  • Kazemian H, Naghdali Z, Kashani TG, Farhadi F (2010) Conversion of high silicon fly ash to Na-P1 zeolite: alkaline fusion followed by hydrothermal crystallization. Adv Powder Technol 21(3):279–283

    Article  CAS  Google Scholar 

  • Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 359(6397):710–712

    Article  CAS  Google Scholar 

  • La-Salvia N, Lovón-Quintana JJ, Valença GP (2015) Vapor-phase catalytic conversion of ethanol into 1, 3-butadiene on Cr-Ba/MCM-41 catalysts. Braz J Chem Eng 32(2):489–500

    Article  CAS  Google Scholar 

  • Li J, Wang L, Qi T, Zhou Y, Liu C, Chu J, Zhang Y (2008) Different N-containing functional groups modified mesoporous adsorbents for Cr (VI) sequestration: synthesis, characterization and comparison. Microporous Mesoporous Mater 110(2–3):442–450

    Article  CAS  Google Scholar 

  • Li Y, Li T, Jin Z (2011) Stabilization of Fe0 nanoparticles with silica fume for enhanced transport and remediation of hexavalent chromium in water and soil. J Environ Sci-China 23(7):1211–1218

    Article  CAS  Google Scholar 

  • Li D, Min H, Jiang X, Ran X, Zou L, Fan J (2013) One-pot synthesis of aluminum-containing ordered mesoporous silica MCM-41 using coal fly ash for phosphate adsorption. J Colloid Interface Sci 404:42–48

    Article  CAS  Google Scholar 

  • Liu Y, Zhong G, Liu Z, Meng M, Jiang Y, Ni L, Liu F (2015) Preparation of core–shell ion imprinted nanoparticles via photoinitiated polymerization at ambient temperature for dynamic removal of cobalt in aqueous solution. RSC Adv 5(104):85691–85704

    Article  CAS  Google Scholar 

  • Liu Y, Zheng Y, Du B, Nasaruddin RR, Chen T, Xie J (2017) Golden carbon nanotube membrane for continuous flow catalysis. Ind Eng Chem Res 56(11):2999–3007

    Article  CAS  Google Scholar 

  • Liu Q, Liu Q, Liu B, Hu T, Liu W, Yao J (2018a) Green synthesis of tannin-hexamethylendiamine based adsorbents for efficient removal of Cr (VI). J Hazard Mater 352:27–35

    Article  CAS  Google Scholar 

  • Liu CL, Zheng SL, Ma SH, Luo Y, Ding J, Wang XH, Zhang Y (2018b) A novel process to enrich alumina and prepare silica nanoparticles from high-alumina fly ash. Fuel Process Technol 173:40–47

    Article  CAS  Google Scholar 

  • Mahoney L, Wu CM, Kibombo HS, Thiruppathi E, Baltrusaitis J, Rasalingam S, Koodali RT (2013) Exploration of the role of anions in the synthesis of Cr containing mesoporous materials at room temperature. Microporous Mesoporous Mater 170:211–225

    Article  CAS  Google Scholar 

  • Majchrzak-Kucęba I, Nowak W (2011) Characterization of MCM-41 mesoporous materials derived from polish fly ashes. Int J Miner Process 101(1–4):100–111

    Article  CAS  Google Scholar 

  • Malkoc E, Nuhoglu Y (2006) Fixed bed studies for the sorption of chromium (VI) onto tea factory waste. Chem Eng Sci 61(13):4363–4372

    Article  CAS  Google Scholar 

  • Meng F, Ma W, Zong P, Wang R, Wang L, Duan C, Wang B (2016) Synthesis of a novel catalyst based on Fe (II)/Fe (III) oxide and high alumina coal fly ash for the degradation of o-methyl phenol. J Clean Prod 133:986–993

    Article  CAS  Google Scholar 

  • Mofarrah A, Husain T, Chen B (2014) Optimizing Cr(VI) adsorption on activated carbon produced from heavy oil fly ash. J Mater Cysles Waste 16(3):482–490

  • Mustafa S, Khan S, Zaman MI (2010) Effect of Ni2+ ion doping on the physical characteristics and chromate adsorption behavior of goethite. Water Res 44(3):918–926

    Article  CAS  Google Scholar 

  • Nabin S, Anna L, Emmanuel A, Jibran I, Amit B (2019) A comparative study of magnetic chitosan (Chi@Fe3O4) and grapheme oxide modified magnetic chitosan (Chi@Fe3O4GO) nanocomposites for efficient removal of Cr(VI) from water. Int Nt J Biol Macromol 137:948–959

    Article  CAS  Google Scholar 

  • Niazi L, Lashanizadegan A, Sharififard H (2018) Chestnut oak shells activated carbon: preparation, characterization and application for Cr (VI) removal from dilute aqueous solutions. J Clean Prod 185:554–561

    Article  CAS  Google Scholar 

  • Norouzi S, Heidari M, Alipour V, Rahmanian O, Fazlzadeh M, Mohammadi-Moghadam F, Dindarloo K (2018) Preparation, characterization and Cr (VI) adsorption evaluation of NaOH-activated carbon produced from date press cake; an agro-industrial waste. Bioresour Technol 258:48–56

    Article  CAS  Google Scholar 

  • Nriagu JO, Nieboer E (1988) Chromium in the natural and human environments. Wiley Series, New York

  • Obata A, Kasuga T, Jones JR (2011) Hydroxyapatite coatings incorporating silicon ion releasing system on titanium prepared using water glass and vaterite. J Am Ceram Soc 94(7):2074–2079

    Article  CAS  Google Scholar 

  • Panek R, Wdowin M, Franus W, Czarna D, Stevens LA, Deng H, Snape CE (2017) Fly ash-derived MCM-41 as a low-cost silica support for polyethyleneimine in post-combustion CO2 capture. J. CO2. Util. 22:81–90

    Article  CAS  Google Scholar 

  • Papandreou AD, Stournaras CJ, Panias D (2011) Adsorption of Pb(II), Zn(II) and Cr(III) on coal fly ash porous pellets. Miner Eng 24(13):1495–1501

  • Pawar RC, Lee CS (2013) Sensitization of CdS nanoparticles onto reduced graphene oxide (RGO) fabricated by chemical bath deposition method for effective removal of Cr(VI). Mater Chem Phys 141(2–3):686–693

    Article  CAS  Google Scholar 

  • Qi G, Lei X, Li L (2016) Coal Fly Ash-derived Mesoporous Calcium-Silicate Material (MCSM) for the Efficient Removal of Cd(II), Cr(III), Ni(II) and Pb(II) from Acidic Solutions. Procedia Environ Sci 31:567–576

  • Qiu J, Wang Z, Li H, Xu L, Peng J, Zhai M, Wei G (2009) Adsorption of Cr(VI) using silica-based adsorbent prepared by radiation-induced grafting. J Hazard Mater 166(1):270–276

    Article  CAS  Google Scholar 

  • Qiu J, Zhang XF, Zhang X, Feng Y, Li Y, Yang L, Yao J (2018) Constructing Cd0. 5Zn0. 5S@ ZIF-8 nanocomposites through self-assembly strategy to enhance Cr (VI) photocatalytic reduction. J Hazard Mater 349:234–241

    Article  CAS  Google Scholar 

  • Qiu J, Zhao Y, Xing J (2017) Fly ash-based geopolymer as a potential adsorbent for Cr(VI) removal, Desalin. Water Treat 70:201–209

  • Ranjan D, Talat M, Hasan SH (2009) Biosorption of arsenic from aqueous solution using agricultural residue ‘rice polish’. J Hazard Mater 166(2–3):1050–1059

    Article  CAS  Google Scholar 

  • Rutkowska M, Macina D, Mirocha-Kubien N, Piwowarska Z, Chmielarz L (2015) Hierarchically structured ZSM-5 obtained by desilication as new catalyst for DME synthesis from methanol. Appl Catal B 174−175:336–343

    Article  CAS  Google Scholar 

  • Shahbazi A, Younesi H, Badiei A (2011) Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb (II), cu (II) and cd (II) heavy metal ions in batch and fixed bed column. Chem Eng J 168(2):505–518

    Article  CAS  Google Scholar 

  • Siddhi Jailani H, Rajadurai A, Mohan B, Senthil Kumar A, Sornakumar T (2011) Development and properties of aluminium silicon alloy fly ash composites. Powder Metall 54(4):474–479

    Article  CAS  Google Scholar 

  • Sing KS (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl Chem 57(4):603–619

    Article  CAS  Google Scholar 

  • Tauanov Z, Shah D, Inglezakis V, Jamwal PK (2018) Hydrothermal synthesis of zeolite production from coal fly ash: a heuristic approach and its optimization for system identification of conversion. J Clean Prod 182:616–623

    Article  CAS  Google Scholar 

  • Verbinnen B, Block C, Van CJ (2015) Recycling of spent adsorbents for oxyanions and heavy metal ions in the production of ceramics. Waste Manag 45:407–411

    Article  CAS  Google Scholar 

  • Wang WX, Qiao Y, Li T (2017) Improved removal of Cr(VI) from aqueous solution using zeolite synthesized from coal fly ash via mechano-chemical treatment, Asia-Pac. J Chem Eng 12(2):259–267

  • Wu M, Li G, Jiang X, Xiao Q, Niu M, Wang Z, Wang Y (2017) Non-biological reduction of Cr (VI) by reacting with humic acids composted from cattle manure. RSC Adv 7(43):26903–26911

    Article  CAS  Google Scholar 

  • Xu C, Yang W, Liu W, Sun H, Jiao C, Lin AJ (2018) Performance and mechanism of Cr (VI) removal by zero-valent iron loaded onto expanded graphite. J Environ Sci-China 67:14–22

    Article  Google Scholar 

  • Zhang X, Lin S, Lu XQ, Chen ZL (2010) Removal of Pb(II) from water using synthesized kaolin supported nanoscale zero-valent iron. Chem Eng J 163(3):243–248

    Article  CAS  Google Scholar 

  • Zhang Z, Gao T, Si S (2018) One-pot preparation of P(TA-TEPA)-PAM-RGO ternary composite for high efficient Cr(VI) removal from aqueous solution. Chem Eng J 343:207–216

    Article  CAS  Google Scholar 

  • Zhao S, Chen Z, Shen J, Qu Y, Wang B, Wang X (2017) Enhanced Cr (VI) removal based on reduction-coagulation-precipitation by NaBH4 combined with fly ash leachate as a catalyst. Chem Eng J 322:646–656

    Article  CAS  Google Scholar 

  • Zouboulis AI, Loukidou MX, Matis KA (2004) Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem 39(8):909–916

    Article  CAS  Google Scholar 

Download references

Funding

The research work was supported by National Natural Science Foundation of China (Grant Nos. U1402233 and 21767016) and Young Academic & Technical Leader Raising Foundation of Yunnan Province (Grant No. 2008py010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caiyun Han or Yongming Luo.

Additional information

Responsible editor: Tito Roberto Cadaval Jr

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Zhang, L., An, X. et al. Microwave assistant rapid synthesis MCM-41-NH2 from fly ash and Cr(VI) removal performance. Environ Sci Pollut Res 26, 31463–31477 (2019). https://doi.org/10.1007/s11356-019-06255-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06255-y

Keywords

Navigation