Skip to main content
Log in

Characterization of the catalytic ability and surface properties of a heterogeneous biocatalyst obtained by the sol-gel method

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A heterogeneous biocatalyst was obtained by immobilizing the cells of the yeast Debaryomyces hansenii VKM Y-2482 and the bacteria Paracoccus yeei VKM B-3302 into an organosilica material using the sol-gel method. The catalytic activity of immobilized cells was characterized using a heterogeneous biocatalyst as a bioreceptor element of the biosensor. The surface properties of the synthesized material were studied using the BET and BJH methods. It was shown that a heterogeneous biocatalyst with a composition of 50 vol.% MTES and 50 vol.% TEOS exhibited the highest catalytic efficiency. The formed material was mesoporous with slit-like pores. It was shown that the BOD-biosensor with the developed heterogeneous biocatalyst allows data to be obtained that were consistent with the certified method for determining the BOD.

Graphical abstract

Highlights

  • Immobilizing together bacteria Paracoccus yeei and yeast Debaryomyces hansenii.

  • Formation of material from methyltriethoxysilane and tetraethoxysilane.

  • The biosensor approach for catalytic activity measures immobilized cells.

  • Brunauer–Emmett–Teller and Barrett–Joyner–Halenda methods for the analysis of the surface.

  • Heterogeneous biocatalyst for determining biochemical oxygen demand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sivayogam D, Punithavathi IK, Johnson Jayakumar S, Mahendran N, Structural, optical and electrical properties of Cd doped CuO nanoparticles obtained by simple sol-gel method, Mater Today: Proceedings, 2021. https://doi.org/10.1016/j.matpr.2021.09.291.

  2. Cruz ME, Castro Y, Durán A, Glasses and glass-ceramics prepared by Sol–Gel Encyclopedia of materials: technical ceramics and glasses, Elsevier, 2021. 695–708. https://doi.org/10.1016/B978-0-12-818542-1.00020-5.

  3. Øye G, Glomm WR, Vrålstad T, Volden S, Magnusson H, Stöcker M, Sjöblom J (2006) Synthesis, functionalization and characterization of mesoporous materials and sol–gel glasses for applications in catalysis, adsorption and photonics. Adv Colloid Interface Sci 123–126:17–32. https://doi.org/10.1016/j.cis.2006.05.010.

    Article  CAS  Google Scholar 

  4. Ricci GP, Garcia LO, Nassar EJ, Nakagaki S, Stival JF, da Rocha ZN, Vicente MA, Trujillano R, Jiménez A, Rives V, Marçal L, de Faria EH, Ciuffi KJ (2021) Non-hydrolytic sol-gel synthesis of mesoporous iron-aluminum oxide and their properties in the oxidation of hydrocarbons by hydrogen peroxide. Microporous Mesoporous Mater 325:111317. https://doi.org/10.1016/j.micromeso.2021.111317.

    Article  CAS  Google Scholar 

  5. Kareem S, Xie Y, Li T, Ding Y, Tsiwah EA, Ahmed ASA, Chen J, Qiao F, Chen Z, Zhao X (2020) Base-catalyzed synthesis of superhydrophobic and antireflective films for enhanced photoelectronic applications. J Mater Res Technol 9(-I. 3):3958–3966. https://doi.org/10.1016/j.jmrt.2020.02.022.

    Article  CAS  Google Scholar 

  6. Park S, Kim C-H, Lee W-J, Sung S, Yoon M-H (2017) Sol-gel metal oxide dielectrics for all-solution-processed electronics. Mater Sci Eng: R: Rep 114:1–22. https://doi.org/10.1016/j.mser.2017.01.003.

    Article  Google Scholar 

  7. Agustín-Sáenz C, Martín-Ugarte E, Pérez-Allende B, Izagirre-Etxeberria U (2021) Effect of ethyleneglycoldimethacrylate on VOC reduction, rheological, mechanical and anticorrosion properties of a hybrid sol-gel coating on AA2024-T3 and sulfuric acid anodized AA2024-T3. Prog Org Coat 159:106408. https://doi.org/10.1016/j.porgcoat.2021.106408.

    Article  CAS  Google Scholar 

  8. Nuchtavorn N, Leanpolchareanchai J, Suntornsuk L, Macka M (2020) Paper-based sol-gel thin films immobilized cytochrome P450 for enzyme activity measurement. Anal Chim Acta 1098:86–93. https://doi.org/10.1016/j.aca.2019.11.031.

    Article  CAS  Google Scholar 

  9. Liu X, Zhu X, Camara MA, Qu Q, Shan Y, Yang L (2019) Surface modification with highly-homogeneous porous silica layer for enzyme immobilization in capillary enzyme microreactors. Talanta 197:539–547. https://doi.org/10.1016/j.talanta.2019.01.080.

    Article  CAS  Google Scholar 

  10. Desimone MF, Matiacevich SB, del Pilar Buera M, Díaz LE (2008) Effects of relative humidity on enzyme activity immobilized in sol–gel-derived silica nanocomposites. Enzym Microb Technol 42(-I. 7):583–588. https://doi.org/10.1016/j.enzmictec.2008.03.009.

    Article  CAS  Google Scholar 

  11. Nampi PP, Kartha CC, Jose G, Kumar APR, Anilkumar T, Varma H (2013) Sol-gel nanoporous silica as substrate for immobilization of conjugated biomolecules for application as fluorescence resonance energy transfer (FRET) based biosensor. Sens Actuators B: Chem 185:252–257. https://doi.org/10.1016/j.snb.2013.04.067.

    Article  CAS  Google Scholar 

  12. de Souza RL, de Faria ELP, Figueiredo RT, dos Santos Freitas L, Iglesias M, Mattedi S, Zanin GM, dos Santos OAA, Coutinho JAP, Lima ÁS, Soares CMF (2013) Protic ionic liquid as additive on lipase immobilization using silica sol–gel. Enzym Microb Technol 52(-I. 3):141–150. https://doi.org/10.1016/j.enzmictec.2012.12.007.

    Article  CAS  Google Scholar 

  13. Kamanina OA, Fedoseeva DG, Rogova TV, Ponamoreva ON, Blokhin IV, Machulin AV, Alferov VA (2014) Synthesis of organosilicon sol-gel matrices and preparation of heterogeneous biocatalysts based on them. Russ J Appl Chem 87(6):761–766. https://doi.org/10.1134/S1070427214060160.

    Article  CAS  Google Scholar 

  14. Kamanina OA, Lavrova DG, Arlyapov VA, Alferov VA, Ponamoreva ON, Silica sol-gel encapsulated methylotrophic yeast as filling of biofilters for the removal of methanol from industrial wastewater, Enzyme and Microbial Technology. Elsevier Inc., 2016.92. 94–98. https://doi.org/10.1016/j.enzmictec.2016.06.014.

  15. Ponamoreva ON, Lavrova DG, Kamanina OA, Rybochkin PV, Machulin AV, Alferov VA (2019) Biohybrid of methylotrophic yeast and organically modified silica gels from sol-gel chemistry of tetraethoxysilane and dimethyldiethoxysilane. J Sol-Gel Sci Technol 0:359–366. https://doi.org/10.1007/s10971-019-04967-8.

    Article  CAS  Google Scholar 

  16. Lu C, Zahedi P, Forman A, Allen C (2014) Multi-arm PEG/Silica hydrogel for sustained ocular drug delivery. J Pharm Sci 103(1):216–226. https://doi.org/10.1002/jps.23777.

    Article  CAS  Google Scholar 

  17. Kamanina OA, Arlyapov VA, Rybochkin PV, Lavrova DG, Podsevalova EA, Ponamoreva ON (2021) Application of organosilicate matrix based on methyltriethoxysilane, PVA and bacteria Paracoccus yeei to create a highly sensitive BOD. 3 Biotech 11:331.

    Article  Google Scholar 

  18. Lavrova DG, Kamanina OA, Alferov VA, Rybochkin PV, Machulin AV, Sidorov AI, Ponamoreva ON (2021) Impact of hydrophilic polymers in organosilica matrices on structure, stability, and biocatalytic activity of immobilized methylotrophic yeast used as biofilter bed. Enzym Microb Technol 150:109879. https://doi.org/10.1016/j.enzmictec.2021.109879.

    Article  CAS  Google Scholar 

  19. Liu L, Bai L, Yu D, Zhai J, Dong S, Biochemical oxygen demand measurement by mediator method in flow system, Talanta. 2015. https://doi.org/10.1016/j.talanta.2015.02.001.

  20. Giovanella P, Vieira GAL, Ramos Otero IV, Pais Pellizzer E, de Jesus Fontes B, Sette L D, Metal and organic pollutants bioremediation by extremophile microorganisms, Journal of Hazardous Materials. Elsevier, 2020. 382, 2019. 121024. https://doi.org/10.1016/j.jhazmat.2019.121024.

  21. Vanwonterghem I, Webster NS, Coral Reef Microorganisms in a Changing Climate, iScience. Elsevier Inc., 2020. 23, 4. 100972. https://doi.org/10.1016/j.isci.2020.100972.

  22. Pannekens M, Kroll L, Müller H, Mbow FT, Meckenstock RU, Oil reservoirs, an exceptional habitat for microorganisms, New Biotechnology. Elsevier, 2019. 49, 2018.1–9. https://doi.org/10.1016/j.nbt.2018.11.006.

  23. Kiran GS, Sekar S, Ramasamy P, Thinesh T, Hassan S, Lipton AN, Ninawe AS, Selvin J, Marine sponge microbial association: Towards disclosing unique symbiotic interactions, Marine Environmental Research. Elsevier Ltd, 2018. 140. 169–179. https://doi.org/10.1016/j.marenvres.2018.04.017.

  24. Faramarzi MA, Mogharabi-Manzari M, Brandl H, Bioleachingofmetalsfromwastesandlow-gradesourcesbyHCN-formingmicroorganisms, Hydrometallurgy. Elsevier, 2020. 191, 2019. 105228. https://doi.org/10.1016/j.hydromet.2019.105228.

  25. Ibrahim S, Azab El-Liethy M, Abia ALK, Abdel-Gabbar M, Al Zanaty AM, Mohamed MK, Design of a bioaugmented multistage biofilter for accelerated municipal wastewater treatment and deactivation of pathogenic microorganisms, Sci Total Environ. Elsevier B.V., 2020. 703. 1–12. https://doi.org/10.1016/j.scitotenv.2019.134786.

  26. Mącik M, Gryta A, Frąc M, Biofertilizers in agriculture: An overview on concepts, strategies and effects on soil microorganisms, Adv Agron. 2020. https://doi.org/10.1016/bs.agron.2020.02.001.

  27. Ponamoreva ON, Kamanina OA, Alferov VA, Machulin AV, Rogova TV, Arlyapov VA, Alferov SV, Suzina NE, Ivanova EP, Yeast-based self-organized hybrid bio-silica sol-gels for the design of biosensors, Biosens Bioelectron. Elsevier, 2015.67. 321–326. https://doi.org/10.1016/j.bios.2014.08.045.

  28. Kharkova AS, Arlyapov VA, Turovskaya AD, Avtukh AN, Starodumova IP, Reshetilov AN (2019) Mediator BOD Biosensor Based on Cells of Microorganisms Isolated from Activated Sludge. Appl Biochem Microbiol 55:189–197. https://doi.org/10.1134/S0003683819010083.

    Article  CAS  Google Scholar 

  29. ISO 5815-1:2003, 2003. Water Quality–Determination of Biochemical Oxygen Demand after N Days (BODn) - Part 1: Dilution and Seeding Method with Allylthiourea Addition.

  30. Arlyapov VA, Yudina NY, Asulyan LD, Kamanina OA, Alferov SV, Shumsky AN, Machulin AV, Alferov VA, Reshetilov AN (2020) Registration of BOD using Paracoccus yeei bacteria isolated from activated sludge. 3 Biotech Springe Int Publ 10(5):1–11. https://doi.org/10.1007/s13205-020-02199-0.

    Article  Google Scholar 

  31. Ponamoreva ON, Afonina EL, Kamanina OA, Lavrova DG, Arlyapov VA, Alferov VA, Boronin AM (2018) Yeast Debaryomyces hansenii within ORMOSIL Shells as a Heterogeneous Biocatalyst. Appl Biochem Microbiol 54:736–742. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061829085&doi=10.1134%2FS0003683818070062&partnerID=40&md5=7a24c501f1f1424fbbb0b15cc5d473cf.

  32. Arlyapov VA, Yudina NY, Asulyan LD, Alferov SV, Alferov VA, Reshetilov AN (2013) BOD biosensor based on the yeast Debaryomyces hansenii immobilized in poly(vinyl alcohol) modified by N-vinylpyrrolidone. Enzym Microb Technol 53:257–262. http://www.sciencedirect.com/science/article/pii/S0141022913001257.

  33. Yudina NY, Arlyapov VA, Chepurnova MA, Alferov SV, Reshetilov AN, A yeast co-culture-based biosensor for determination of waste water contamination levels, Enzyme and Microbial Technology. Elsevier Inc., 2015. 78:46–53. https://doi.org/10.1016/j.enzmictec.2015.06.008.

  34. Lapham DP, Lapham JL (2019) BET surface area measurement of commercial magnesium stearate by krypton adsorption in preference to nitrogen adsorption. Int J Pharm 568:118522. https://doi.org/10.1016/j.ijpharm.2019.118522.

    Article  CAS  Google Scholar 

  35. Mohan VB, Jayaraman K, Bhattacharyya D (2020) Brunauer–Emmett–Teller (BET) specific surface area analysis of different graphene materials: A comparison to their structural regularity and electrical properties. Solid State Commun 320:114004. https://doi.org/10.1016/j.ssc.2020.114004.

    Article  CAS  Google Scholar 

  36. Zhang H, Zhao H, Mu S, Cai J, Xiang Y, Wang J, Hong J (2021) Surface relaxation and permeability of cement pastes with hydrophobic agent: Combining 1H NMR and BET. Constr Build Mater 311:125264. https://doi.org/10.1016/j.conbuildmat.2021.125264.

    Article  CAS  Google Scholar 

  37. Wang G, Wang K, Ren T (2014) Improved analytic methods for coal surface area and pore size distribution determination using 77 K nitrogen adsorption experiment. Int J Min Sci Technol 24:329–334. https://doi.org/10.1016/j.ijmst.2014.03.007.

    Article  CAS  Google Scholar 

  38. Rouquerol F, Rouquerol L, Sing K, Adsorption by Powders and Porous Solids. Academic Press, 1999. p. 467.

  39. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619. https://doi.org/10.1351/pac198557040603.

    Article  CAS  Google Scholar 

  40. de Boer JH (1958) UntersuchungenübermikroporöseSalz- und Oxyd-Systeme. AngewandteChemie 70(13):383–418. https://doi.org/10.1002/ange.19580701302.

    Article  Google Scholar 

  41. Dutta D, Chatterjee S, Pillai KT, Pujari PK, Ganguly BN (2005) Pore structure of silica gel: a comparative study through BET and PALS. Chem Phys – 312:319–324. https://doi.org/10.1016/j.chemphys.2004.12.008.

    Article  CAS  Google Scholar 

  42. Jouanneau S, Recoules L, Durand MJ, Boukabache A, Picot V, Primault Y, Thouand G (2014) Methods for assessing biochemical oxygen demand (BOD): A review. Water Res 49:62–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of a state assignment on the topic “Synthesis of targeted biologically active ionic compounds and new biocomposite materials” (FEWG-2021-0011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Kamanina.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybochkin, P.V., Kamanina, O.A., Lantsova, E.A. et al. Characterization of the catalytic ability and surface properties of a heterogeneous biocatalyst obtained by the sol-gel method. J Sol-Gel Sci Technol 108, 310–319 (2023). https://doi.org/10.1007/s10971-022-05915-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05915-9

Keywords

Navigation