Skip to main content

Advertisement

Log in

Simultaneously converting CH4 and CO2 to syngas using a novel Pt doped Ni/MgO-Al2O3 aerogel catalyst

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

CH4 and CO2 are the main greenhouse effect contributors that cause global warming and undesirable climate change. Simultaneously converting CH4 and CO2 into value-added syngas via dry reforming (DRM) is an attractive route but highly active catalyst is demanded. A novel Ni-Pt/MgO-Al2O3 aerogel was developed via a sol-gel combined with supercritical deposition method and the effect of Pt doping in DRM was studied. The catalytic activities of Ni-Pt/MgO-Al2O3 aerogel catalysts followed the order: Ni10Pt0.1 > Ni10Pt0.05 > Ni10Pt0.2 > Ni10. 87% CH4 and 82% CO2 can be stably converted to syngas at 800 °C on the optimal Ni10Pt0.1. Characterizations including XRD, BET, HRTEM, H2-TPR, TG/DSC, and FESEM analysis revealed that increasing the Pt/Ni ratio from 0 to 0.01 helped to transfer Ni2Al2O4 spinel to bulk NiOx species, which is conducive to higher activity owing to the improvement of reducibility of the catalyst. However, a further increase in the Pt/Ni ratio to 0.02 resulted in the transformation of the bulk NiOx species to surface NiOx, which deteriorated the Ni-Pt catalyst performance. Kinetic experiments on the optimal Ni10Pt0.1 showed a CH4 activation energy of 31.8 kJ/mol, which is comparable to Pt-Ni catalysts with higher Pt contents. This work developed a promising catalyst for DRM and will help utilize abundant CH4 and CO2 resources in a clean and efficient way.

Graphical abstract

Highlights

  • Ni–Pt bimetallic catalysts were prepared via sol–gel combined with supercritical deposition method.

  • Ni species and their reduction behavior can be tuned by Pt/Ni ratio.

  • Ni10Pt0.1 exhibited the best catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Chung WC, Chang MB (2016) Review of catalysis and plasma performance on dry reforming of CH4 and possible synergistic effects. Renew Sust Energ Rev 62:13–31

    Article  CAS  Google Scholar 

  2. Maestri M, Vlachos DG, Beretta A, Groppi G, Rronconi E (2009) A C-1 Microkinetic Model for Methane Conversion to Syngas on Rh/Al2O3. Aiche J 55:993–1008

    Article  CAS  Google Scholar 

  3. Singh R, Dhir A, Mohapatra SK, Mahla SK (2020) Dry reforming of methane using various catalysts in the process: review. Biomass- Convers Biorefinery 10:567–587

    Article  CAS  Google Scholar 

  4. Jang WJ, Shim JO, Kim HM, Yoo SY, Roh HS (2019) A review on dry reforming of methane in aspect of catalytic properties. Catal Today 324:15–26

    Article  CAS  Google Scholar 

  5. Munoz MA, Calvino JJ, Rodriguez-Izquierdo JM, Blanco G, Arias DC, Perez-Omil JA, Hernandez-Garrido JC, Gonzalez-Leal JM, Cauqui MA, Yeste MP (2017) Highly stable ceria-zirconia-yttria supported Ni catalysts for syngas production by CO2 reforming of methane. Appl Surf Sci 426:864–873

    Article  CAS  Google Scholar 

  6. Wang C, Wang Y, Chen M, Liang D, Yang Z, Cheng W, Tang Z, Wang J, Zhang H (2021) Recent advances during CH4 dry reforming for syngas production: a mini-review. Int J Hydrog Energy 46:5852–5874

    Article  CAS  Google Scholar 

  7. Moreno YP, da Silva WL, Stedile FC, Radtke C, dos Santos JHZ (2021) Micro and nanodomains on structured silica/titania photocatalysts surface evaluated in RhB degradation: effect of structural properties on catalytic efficiency. Appl Surf Sci Adv, 3

  8. Oviedo LR, Muraro PCL, Pavoski G, Espinosa DCR, Ruiz YPM, Galembeck A, Rhoden CRB, da Silva WL (2022) Synthesis and characterization of nanozeolite from (agro)industrial waste for application in heterogeneous photocatalysis. Environ Sci Pollut Res 29:3794–3807

    Article  CAS  Google Scholar 

  9. Zhang L, Zhang Q, Liu Y, Zhang Y (2016) Dry reforming of methane over Ni/MgO-Al2O3 catalysts prepared by two-step hydrothermal method. Appl Surf Sci 389:25–33

    Article  CAS  Google Scholar 

  10. Chen L, Huang Q, Zhang D, Liu W, Yang T (2019) Temperature programmed surface reaction test of Co-Ni bimetallic aerogel catalysts for methane reforming. React Kinet Mechanisms Catal 126:951–962

    Article  CAS  Google Scholar 

  11. Deng G, Zhang G, Zhu X, Guo Q, Liao X, Chen X, Li K (2021) Optimized Ni-based catalysts for methane reforming with O2-containing CO2. Appl Catal B-Environ 289

  12. Zhang HG, Wang H, Dalai AK (2008) Effects of metal content on activity and stability of Ni-Co bimetallic catalysts for CO2 reforming of CH4. Appl Catal A-Gen 339:121–129

    Article  CAS  Google Scholar 

  13. Li Z, Kawi S (2018) Multi-Ni@Ni phyllosilicate hollow sphere for CO2 reforming of CH4: influence of Ni precursors on structure, sintering and carbon resistance. Catal Sci Technol 8:1915–1922

    Article  CAS  Google Scholar 

  14. Mejia CH, van Deelen TW, de Jong KP (2018) Activity enhancement of cobalt catalysts by tuning metal-support interactions. Nat Commun 9:4459

    Article  CAS  Google Scholar 

  15. Luisetto I, Tuti S, Di E (2012) Bartolomeo, Co and Ni supported on CeO2 as selective bimetallic catalyst for dry reforming of methane. Int J Hydrog Energy 37:15992–15999

    Article  CAS  Google Scholar 

  16. Li D, Nishida K, Zhan Y, Shishido T, Oumi Y, Sano T, Takehira K (2008) Superior catalytic behavior of trace Pt-doped Ni/Mg(Al)O in methane reforming under daily start-up and shut-down operation. Appl Catal A-Gen 350:225–236

    Article  CAS  Google Scholar 

  17. Elsayed NH, Roberts NRM, Joseph B, Kuhn JN (2016) Comparison of Pd-Ni-Mg/Ceria-Zirconia and Pt-Ni-Mg/Ceria-Zirconia Catalysts for Syngas Production via Low Temperature Reforming of Model Biogas. Top Catal 59:138–146

    Article  CAS  Google Scholar 

  18. Chen L, Zhu Q, Wu R (2011) Effect of Co-Ni ratio on the activity and stability of Co-Ni bimetallic aerogel catalyst for methane Oxy-CO2 reforming. Int J Hydrog Energy 36:2128–2136

    Article  CAS  Google Scholar 

  19. Jaiswar VK, Katheria S, Deo G, Kunzru D (2017) Effect of Pt doping on activity and stability of Ni/MgAl2O4 catalyst for steam reforming of methane at ambient and high pressure condition. Int J Hydrog Energy 42:18968–18976

    Article  CAS  Google Scholar 

  20. Dai CY, Zhang SH, Zhang AF, Song CS, Shi C, Guo XW (2015) Hollow zeolite encapsulated Ni-Pt bimetals for sintering and coking resistant dry reforming of methane. J Mater Chem A 3:16461–16468

    Article  CAS  Google Scholar 

  21. Mo L, Fei J, Huang C, Zheng X (2003) Reforming of methane with oxygen and carbon dioxide to produce syngas over a novel Pt/CoAl2O4/Al2O3 catalyst. J Mol Catal A 193:177–184

    Article  CAS  Google Scholar 

  22. Li B, Kado S, Mukainakano Y, Nurunnabi M, Miyao T, Naito S, Kunimori K, Tomishige K (2006) Temperature profile of catalyst bed during oxidative steam reforming of methane over Pt-Ni bimetallic catalysts. Appl Catal A 304:62–71

    Article  CAS  Google Scholar 

  23. Gunes H, Ozbakir Y, Barim SB, Yousefzadeh H, Bozbag SE, Erkey C (2020) A Remarkable Class of Nanocomposites: aerogel Supported Bimetallic Nanoparticles. Front Mater 7

  24. Hao ZG, Zhu QS, Lei Z, Li HZ (2008) CH4-CO2 reforming over Ni/Al2O3 aerogel catalysts in a fluidized bed reactor. Powder Technol 182:474–479

    Article  CAS  Google Scholar 

  25. Chen L, Zhu Q, Hao Z, Zhang T, Xie Z (2010) Development of a Co-Ni bimetallic aerogel catalyst for hydrogen production via methane oxidative CO2 reforming in a magnetic assisted fluidized bed. Int J Hydrog Energy 35:8494–8502

    Article  CAS  Google Scholar 

  26. Yoo J, Bang Y, Han SJ, Park S, Song JH, Song IK (2015) Hydrogen production by tri-reforming of methane over nickel-alumina aerogel catalyst. J Mol Catal a-Chem 410:74–80

    Article  CAS  Google Scholar 

  27. Yang T, Chen W, Chen L, Liu W, Zhang D (2016) Promotion effect between Ni and Co aerogel catalysts in CH4 reforming with CO2 and O2. J CO2 Utilization 16:130–137

    Article  CAS  Google Scholar 

  28. Li B, Zhang S (2013) Methane reforming with CO2 using nickel catalysts supported on yttria-doped SBA-15 mesoporous materials via sol―gel process. Int J Hydrog Energy 38:14250–14260

    Article  CAS  Google Scholar 

  29. Kumari R, Sengupta S (2020) Catalytic CO2 reforming of CH4 over MgAl2O4 supported Ni-Co catalysts for the syngas production. Int J Hydrog Energy 45:22775–22787

    Article  CAS  Google Scholar 

  30. Kim AR, Lee HY, Cho JM, Choi JH, Bae JW (2017) Ni/M-Al2O3 (M=Sm, Ce or Mg) for combined steam and CO2 reforming of CH4 from coke oven gas. J CO2 Utilization 21:211–218

    Article  CAS  Google Scholar 

  31. Chen L, Huang QY, Wang YC, Xiao H, Liu WF, Zhang DC, Yang TZ (2019) Tailoring performance of Co-Pt/MgO-Al2O3 bimetallic aerogel catalyst for methane oxidative carbon dioxide reforming: Effect of Pt/Co ratio. Int J Hydrog Energy 44:19878–19889

    Article  CAS  Google Scholar 

  32. Abu Bakar NHH, Bettahar MM, Abu Bakar M, Monteverdi S, Ismail J, Alnot M (2009) PtNi catalysts prepared via borohydride reduction for hydrogenation of benzene. J Catal 265:63–71

    Article  CAS  Google Scholar 

  33. Rynkowski JM, Paryjczak T, Lenik M (1993) On the nature of oxidic nickel phases in NiO/γ-Al2O3 catalysts. Appl Catal A-Gen 106:73–82

    Article  CAS  Google Scholar 

  34. Arena F, Horrell BA, Cocke DL, Parmaliana A, Giordano NJJOC(1991) Magnesia-supported nickel catalysts I.Factors affecting the structure and morphological properties J Catl 132:58–67

    Article  CAS  Google Scholar 

  35. Garcia-Dieguez M, Pieta IS, Herrera MC, Larrubia MA, Alemany LJ (2010) Improved Pt-Ni nanocatalysts for dry reforming of methane. Appl Catal A-Gen 377:191–199

    Article  CAS  Google Scholar 

  36. Wang Y, Yao L, Wang Y, Wang S, Zhao Q, Mao D, Hu C (2018) Low-Temperature Catalytic CO2 Dry Reforming of Methane on Ni-Si/ZrO2 Catalyst. Acs Catal 8:6495–6506

    Article  CAS  Google Scholar 

  37. Carvalho DC, de Souza HSA, Filho JM, Oliveira AC, Campos A, Milet ERC, de Sousa FF, Padron-Hernandez E, Oliveira AC (2014) A study on the modification of mesoporous mixed oxides supports for dry reforming of methane by Pt or Ru. Appl Catal A-Gen 473:132–145

    Article  CAS  Google Scholar 

  38. Jafarbegloo M, Tarlani A, Mesbah AW, Muzart J, Sahebdelfar S (2016) NiO-MgO Solid Solution Prepared by Sol-Gel Method as Precursor for Ni/MgO Methane Dry Reforming Catalyst: Effect of Calcination Temperature on Catalytic Performance. Catal Lett 146:238–248

    Article  CAS  Google Scholar 

  39. de Miguel SR, Vilella IMJ, Maina SP, Jose-Alonso DS, Roman-Martinez MC, Illan-Gomez MJ (2012) Influence of Pt addition to Ni catalysts on the catalytic performance for long term dry reforming of methane. Appl Catal A-Gen 435:10–18

    Article  CAS  Google Scholar 

  40. Osaki T, Mori T (2009) Characterization of nickel-alumina aerogels with high thermal stability. J Non-Crystalline Solids 355:1590–1596

    Article  CAS  Google Scholar 

  41. Son IH, Lee SJ, Song IY, Jeon WS, Jung I, Yun DJ, Jeong DW, Shim JO, Jang WJ, Roh HS (2014) Study on coke formation over Ni/γ-Al2O3, Co-Ni/γ-Al2O3, and Mg-Co-Ni/γ-Al2O3 catalysts for carbon dioxide reforming of methane. Fuel 136:194–200

    Article  CAS  Google Scholar 

  42. Muraza O, Galadima A (2015) A review on coke management during dry reforming of methane. Int J Energy Res 39:1196–1216

    Article  Google Scholar 

  43. ZL Zhang, XEJCT Verykios (1994) Carbon dioxide reforming of methane to synthesis gas over supported Ni catalysts.Catal Today 21: 257–263

  44. Özkara-Aydmoğlu Ş, Aksoylu AE (2011) CO2 reforming of methane over Pt–Ni/Al2O3 catalysts: Effects of catalyst composition, and water and oxygen addition to the feed. Int J Hydrog Energy 36:2950–2959

    Article  CAS  Google Scholar 

  45. Guo J, Lou H, Mo L, Zheng X (2010) The reactivity of surface active carbonaceous species with CO2 and its role on hydrocarbon conversion reactions. J Mol Catal a-Chem 316:1–7

    Article  CAS  Google Scholar 

  46. Movasati A, Alavi SM, Mazloom G (2019) Dry reforming of methane over CeO2-ZnAl2O4 supported Ni and Ni-Co nano-catalysts. Fuel 236:1254–1262

    Article  CAS  Google Scholar 

  47. Li S, Burel L, Aquino C, Tuel A, Morfin F, Rousset J-L, Farrusseng D (2013) Ultimate size control of encapsulated gold nanoparticles. Chem Commun 49:8507–8509

    Article  CAS  Google Scholar 

  48. Segner J, Campbell CT, Doyen G, Ertl G (1984) Catalytic oxidation of CO on Pt(111): The influence of surface defects and composition on the reaction dynamics. Surf Sci 138:505–523

    Article  CAS  Google Scholar 

  49. Tang S, Ji L, Lin J, Zeng HC, Tan KL, Li K (2000) CO2 Reforming of Methane to Synthesis Gas over Sol–Gel-made Ni/γ-Al2O3 Catalysts from Organometallic Precursors. J Catal 194:424–430

    Article  CAS  Google Scholar 

  50. Yan XL, Hu T, Liu P, Li S, Zhao BR, Zhang Q, Jiao WY, Chen S, Wang PF, Lu JJ, Fan LM, Deng XN, Pan YX (2019) Highly efficient and stable Ni/CeO2-SiO2 catalyst for dry reforming of methane: Effect of interfacial structure of Ni/CeO2 on SiO2. Appl Catal B-Environ 246:221–231

    Article  CAS  Google Scholar 

  51. Wang YS, Chen MQ, Yang ZL, Liang T, Liu SM, Zhou ZS, Li XJ (2018) Bimetallic Ni-M (M = Co, Cu and Zn) supported on attapulgite as catalysts for hydrogen production from glycerol steam reforming. Appl Catal A-Gen 550:214–227

    Article  CAS  Google Scholar 

  52. Nogueira FGE, Assaf PGM, Carvalho HWP, Assaf EM (2014) Catalytic steam reforming of acetic acid as a model compound of bio-oil. Appl Catal B-Environ 160:188–199

    Article  CAS  Google Scholar 

  53. Zhang JG, Wang H, Dalai AK (2009) Kinetic Studies of Carbon Dioxide Reforming of Methane over Ni-Co/Al-Mg-O Bimetallic Catalyst. Ind Eng Chem Res 48:677–684

    Article  CAS  Google Scholar 

  54. Wang SB, Lu GQ (1999) A comprehensive study on carbon dioxide reforming of methane over Ni/γ-Al2O3 catalysts. Ind Eng Chem Res 38:2615–2625

    Article  CAS  Google Scholar 

  55. Ozkara-Aydinoglu S, Aksoylu AE (2013) A comparative study on the kinetics of carbon dioxide reforming of methane over Pt-Ni/Al2O3 catalyst: Effect of Pt/Ni Ratio. Chem Eng J 215:542–549

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the financial support from National Science Foundation of China (No. 21306231), China Scholarship Council (No. 201706375005), China Postdoctoral Science Foundation (No. 2018M632988), Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications (No. 2021XGJSKFJJ01) and the Fundamental Research Funds for the Central Universities of Central South University (No. 506022109).

Author information

Authors and Affiliations

Authors

Contributions

LC contributed to the conception of the study. QH performed the experiment. QH and LC performed the data analyses and wrote the manuscript. WL, DZ, TY, ZJ, and JL helped perform the analysis with constructive discussions.

Corresponding authors

Correspondence to Lin Chen or Jiayuan Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Chen, L., Liu, W. et al. Simultaneously converting CH4 and CO2 to syngas using a novel Pt doped Ni/MgO-Al2O3 aerogel catalyst. J Sol-Gel Sci Technol 103, 777–790 (2022). https://doi.org/10.1007/s10971-022-05884-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05884-z

Keywords

Navigation