Skip to main content
Log in

NiO–MgO Solid Solution Prepared by Sol–Gel Method as Precursor for Ni/MgO Methane Dry Reforming Catalyst: Effect of Calcination Temperature on Catalytic Performance

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The influence of calcination temperature (500, 600 and 700 °C) on NiO–MgO solid solution formation and the performance of the resulting catalysts in CO2 reforming of methane was studied. The solid solutions and resulting catalysts were characterized by Brunauer–Emmett–Teller, XRD, temperature-programmed reduction (TPR), TEM and thermal gravimetric analysis techniques. Catalytic performance tests were carried out under 550–750 °C, 1 bar, CO2/CH4 = 1–3 mol/mol and space velocities of 30,000–120,000 ml/(h gcat). The catalyst calcined at 600 °C exhibited the best performance in terms of catalytic activity and stability and showed lowest amount of coke formation after 50 h-on-stream. The effect of calcination temperature on degree of NiO–MgO solid solution formation was demonstrated by both XRD and TPR profiles. The 600 °C calcination temperature was found to be an optimum as it caused modest NiO–MgO interaction, which is responsible for complete formation of the NiO–MgO solid solution with high nickel dispersion and resistant to coke formation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Reddy PVL, Kim KH, Songeol H (2013) Emerging green chemical technologies for the conversion of CH4 to value added products. Renew Sustain Energy Rev 24:578–585

    Article  CAS  Google Scholar 

  2. Yang M, Papp H (2006) CO2 reforming of methane to syngas over highly active and stable Pt/MgO catalysts. Catal Today 115:199–204

    Article  CAS  Google Scholar 

  3. Bradford MCJ, Vannice MA (1999) CO2 reforming of CH4. Catal Rev Sci Eng 41:1–42

    Article  CAS  Google Scholar 

  4. Sokolov S, Kondratenko EV, Pohl M-M et al (2012) Stable low-temperature dry reforming of methane over mesoporous La2O3–ZrO2 supported Ni catalyst. Appl Catal B 113:19–30

    Article  Google Scholar 

  5. Serrano-Lotina A, Daza L (2014) Long-term stability test of Ni-based catalyst in carbon dioxide reforming of methane. Appl Catal A 474:107–113

    Article  CAS  Google Scholar 

  6. Alipour Z, Rezaei M, Meshkani F (2014) Effects of support modifiers on the catalytic performance of Ni/Al2O3 catalyst in CO2 reforming of methane. Fuel 129:197–203

    Article  CAS  Google Scholar 

  7. Hu YH (2009) Solid-solution catalysts for CO2 reforming of methane. Catal Today 148:206–211

    Article  CAS  Google Scholar 

  8. Horváth A, Guczi L, Kocsonya A et al (2013) Sol-derived AuNi/MgAl2O4 catalysts: formation, structure and activity in dry reforming of methane. Appl Catal A 468:250–259

    Article  Google Scholar 

  9. Li Z, Mo L, Kathiraser Y, Kawi S (2014) Yolk-satellite-shell structured Ni–Yolk@Ni@SiO2 nanocomposite: superb catalyst toward methane CO2 reforming reaction. ACS Catal 4:1526–1536

    Article  CAS  Google Scholar 

  10. Jafarbegloo M, Tarlani A, Mesbah AW, Sahebdelfar S (2015) Thermodynamic analysis of carbon dioxide reforming of methane and its practical relevance. Int J Hydrogen Energy 40:2445–2451

    Article  CAS  Google Scholar 

  11. Bao Z, Lu Y, Han J et al (2015) Highly active and stable Ni-based bimodal pore catalyst for dry reforming of methane. Appl Catal A 491:116–126

    Article  CAS  Google Scholar 

  12. Du X, Zhang D, Shi L, Gao R, Zhang J (2012) Morphology dependence of catalytic properties of Ni/CeO2 nanostructures for carbon dioxide reforming of methane. J Phys Chem C 116:10009–10016

    Article  CAS  Google Scholar 

  13. Therdthianwong S, Siangchin C, Therdthianwong A (2008) Improvement of coke resistance of Ni/Al2O3 catalyst in CH4/CO2 reforming by ZrO2 addition. Fuel Process Technol 89:160–168

    Article  CAS  Google Scholar 

  14. Kim J-H, Suh DJ, Park T-J, Kim K-L (2000) Effect of metal particle size on coking during CO2 reforming of CH4 over Ni–alumina aerogel catalysts. Appl Catal A 197:191–200

    Article  CAS  Google Scholar 

  15. Chen Q, Zhang J, Jin Q et al (2013) Effect of reflux digestion treatment on the catalytic performance of Ni–CaO–ZrO2 nanocomposite catalysts for CO2 reforming of CH4. Catal Today 215:251–259

    Article  CAS  Google Scholar 

  16. Estephane J, Aouad S, Hany S et al (2015) CO2 reforming of methane over Ni-Co/ZSM5 catalysts. Aging and carbon deposition study. Int J Hydrogen Energy 40:9201–9208

    Article  CAS  Google Scholar 

  17. Lovell Emma C, Scott J, Amal R (2015) Ni–SiO2 catalysts for the carbon dioxide reforming of methane: varying support properties by flame spray pyrolysis. Molecules 20:4594–4609

    Article  CAS  Google Scholar 

  18. Wang S, Lu GQM (1998) CO2 reforming of methane on Ni catalysts: effects of the support phase and preparation technique. Appl Catal B 16:269–277

    Article  CAS  Google Scholar 

  19. Hu YH, Ruckenstein E (2002) Binary MgO-based solid solution catalysts for methane conversion to syngas. Catal Rev Sci Eng 44:423–453

    Article  CAS  Google Scholar 

  20. Xu B-Q, Wei J-M, Wang H-Y et al (2001) Nano-MgO: novel preparation and application as support of Ni catalyst for CO2 reforming of methane. Catal Today 68:217–225

    Article  CAS  Google Scholar 

  21. Wang YH, Liu HM, Xu BQ (2009) Durable Ni/MgO catalysts for CO2 reforming of methane: activity and metal-support interaction. J Mol Catal A 299:44–52

    Article  CAS  Google Scholar 

  22. Huang T, Huang W, Huang J, Ji P (2011) Methane reforming reaction with carbon dioxide over SBA-15 supported Ni–Mo bimetallic catalysts. Fuel Process Technol 92:1868–1875

    Article  CAS  Google Scholar 

  23. Zhang Y, Tang YH, Zhang EL et al (2010) Preparation of Ni/MgO catalysts for carbon nanofibres by a self-propagating low temperature combustion process. Mater Sci 28:805–815

    Google Scholar 

  24. Shi Q, Liu C, Chen W (2009) Hydrogen production from steam reforming of ethanol over Ni/MgO–CeO2 catalyst at low temperature. J Rare Earths 27:948–954

    Article  Google Scholar 

  25. Liu J, Hu H, Jin L et al (2010) Integrated coal pyrolysis with CO2 reforming of methane over Ni/MgO catalyst for improving tar yield. Fuel Process Technol 91:419–423

    Article  CAS  Google Scholar 

  26. Arena F, Licciardello A, Parmaliana A (1990) The NiO–MgO solid solution is known to produce nickel ensemble sizes that discourage the formation of carbon deposits on the catalyst surface. Catal Lett 6:139–150

    Article  CAS  Google Scholar 

  27. Rostrup-Nielsen JR, Hansen J-HB (1993) CO2 reforming of methane over transition metals. J Catal 144:38–49

    Article  CAS  Google Scholar 

  28. Teuner SC, Neumann P, Von Linde F (2001) CO through CO2 reforming: the Calcor standard and Calcor economy processes. Oil Gas Eur Mag 27:44–46

    Google Scholar 

  29. Tsyganok AI, Tsunoda T, Hamakawa S et al (2003) Dry reforming of methane over catalysts derived from nickel-containing Mg–Al layered double hydroxides. J Catal 213:191–203

    Article  CAS  Google Scholar 

  30. Guo J, Lou H, Zhao H et al (2004) Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Appl Catal A 273:75–82

    Article  CAS  Google Scholar 

  31. Nematollahi B, Rezaei M, Khajenoori M (2011) Combined dry reforming and partial oxidation of methane to synthesis gas on noble metal catalysts. Int J Hydrogen Energy 36:2969–2978

    Article  CAS  Google Scholar 

  32. York APE, Xiao T, Green MLH, Claridge JB (2007) Methane oxyreforming for synthesis gas production. Catal Rev 49:511–560

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to National Petrochemical Company, Research and Technology Company (NPC-RT) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliakbar Tarlani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafarbegloo, M., Tarlani, A., Mesbah, A.W. et al. NiO–MgO Solid Solution Prepared by Sol–Gel Method as Precursor for Ni/MgO Methane Dry Reforming Catalyst: Effect of Calcination Temperature on Catalytic Performance. Catal Lett 146, 238–248 (2016). https://doi.org/10.1007/s10562-015-1638-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1638-9

Keywords

Navigation