Skip to main content
Log in

Recent studies on sol–gel based corrosion protection of Cu—A review

  • Review Paper: Sol–gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This review discusses various sol–gel coatings for the corrosion protection of Cu. It is used in various industries, including automotive, electronics, oil/gas, and thermal–power plants, owing to its electrical/thermal conductivity, and mechanical ductility. However, Cu undergoes severe corrosion in aggressive chloride environments, causing considerable industrial losses. Sol–gel coatings for Cu metal protection are a preferred to other types of metallic coatings, because they are cost effectiveness, simple preparation methodology and eco-friendly. Sol–gel coatings compromise a produce an adhesive and compact layer that adheres to the metal surface and acts as a barrier, preventing the diffusion of aggressive Cl ions into the Cu metal and impeding corrosion. The synthesis, morphological studies, and corrosion protection methods of some advanced sol–gel based hybrid protective coatings are discussed in this review. Furthermore, the corrosion protection ability of these sol–gel coatings and their future development prospects are addressed.

Graphical abstract

Highlights

  • Sol–gel coatings is a very effective method for Cu protection especially in aggressive corrosive media.

  • Sol–gel coatings generate an adhesive layer and acted as a barrier between the Cu and corrosive species.

  • Sol–gel coatings possess several mode of synthesis accordingly with the metal specimen and its surroundings.

  • Sol–gel coatings exhibit an exceptional corrosion inhibitive potential that has been well proven via standard corrosion measurement techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3: Schematic representation of coating of BTA and epoxy group of ESol.
Fig. 4
Fig. 5: Schematic mechanism of sol–gel coating of MFS coating over Cu.
Fig. 6: Schematic representation of hybrid coatings over Cu.
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15: Synthetic route for graphene nanocomposite/hybrid/thiol-based sol–gel coatings.
Fig. 16
Fig. 17: Schematic representation of sol–gel coating.
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26: SEM and AFM images of the f-GNs nanocomposite coatings.
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

Abbreviations

GPTMS:

glycidoxypropyltrimethoxysilane;

BTMSE:

bis (trimethoxysilyl)ethane;

MPTMS:

(3-mercaptopropyl)trimethoxysilane;

TAVS:

triacetoxyvinylsilane;

HMDS:

hexamethyldisilozane;

MTES:

methyltriethoxysilane;

PTMS:

phenyltrimethoxysilane;

BTA:

benzotriazole;

MPES:

3-mercaptopropyltriethoxysilane;

TEOS:

tetraethylorthosilicate;

TSC:

thiosemicarbazide;

TPS:

3-tri-methoxysilyl-1-propanethiol;

APTES:

3-aminopropyltriethoxysilane (APTES);

LA:

lauric acid;

AMTa:

3-amino-5-mercapto-1,2,4-triazole;

TAT:

1H-1,2,4-triazole-3-thiol;

ATP:

4-aminothiophenol;

GPTMS:

3-glycidoxypropyltrimethoxysilane;

(Al(OsBu)3):

aluminum-tri-sec-butoxide;

GF70:

(3-mercaptopropyl) trimethoxysilane;

Si69:

bis -[3-(triethoxysilyl)-propyl]tetrasulfide;

FAS:

fluoroalkylsilane;

EAcAc:

ethyl acetoacetate;

FAS:

fluoroalkylsilane;

TBT:

tetra-n-butyl titanate;

TU:

thiourea;

SU:

sucrose;

f-GNs:

functional graphene nanoplates;

DCC:

dicyclohexylcarbodiimide;

DMAP:

4-dimethylaminopyridine;

MATMS:

3-mercapto propyltrimethoxysilane;

GO:

graphene oxide;

SEM:

scanning electron microscopy,

TEM:

transmission electron microscopy;

AFM:

atomic force microscopy;

EIS:

electrochemical impedance spectroscopy;

PDS:

potentiodynamic polarization.

References

  1. Hammond (2004) The elements, In: Handbook of Chemistry and Physics. CRC Press, Boca Raton.

  2. Harb SV, Trentin A, Uvida MC et al. (2020) A comparative study on PMMA-TiO2 and PMMA-ZrO2 protective coatings. Prog Org Coat 140:105477. https://doi.org/10.1016/j.porgcoat.2019.105477

    Article  CAS  Google Scholar 

  3. Davis (2001) Copper and copper metals. ASM International, United States of America.

  4. Hashemi T, Hogarth CA (1988) The mechanism of corrosion inhibition of copper in NaCl solution by benzotriazole studied by electron spectroscopy. Electrochim Acta 33:1123–1127. https://doi.org/10.1016/0013-4686(88)80203-2

    Article  CAS  Google Scholar 

  5. Brusic V, Frisch MA, Eldridge BN et al. (1991) Copper COrrosion with and without inhibitors. J Electrochem Soc 138:2253–2259. https://doi.org/10.1149/1.2085957

    Article  CAS  Google Scholar 

  6. Autoridad Nacional del Servicio Civil (2021) 済無No title no title no title. Angew Chem Int Ed 6(11):951–952. 144:2013–2015

    Google Scholar 

  7. Wang D, Bierwagen GP (2009) Sol–gel coatings on metals for corrosion protection. Prog Org Coat 64:327–338. https://doi.org/10.1016/j.porgcoat.2008.08.010

    Article  CAS  Google Scholar 

  8. Mittal (2020) Silanes and other coupling agents. CRC Press, Boston.

  9. Mittal (2000) Silanes and other coupling agents. VSP, Boca Raton.

  10. Mittal KL (2004) Silanes and Other Coupling Agents, Volume 3. CRC Press

  11. Mehrotra RC (1992) Structure and bonding; chemistry, spectroscopy and applications of sol-gel glasses. Springer International Publishing

  12. Benzbiria N, Echihi S, Belghiti ME et al. (2021) Novel synthetized benzodiazepine as efficient corrosion inhibitor for copper in 3.5% NaCl solution. Mater Today Proc 37:3932–3939. https://doi.org/10.1016/j.matpr.2020.09.030

    Article  CAS  Google Scholar 

  13. Hasanin MS, Al Kiey SA (2020) Environmentally benign corrosion inhibitors based on cellulose niacin nano-composite for corrosion of copper in sodium chloride solutions. Int J Biol Macromol 161:345–354. https://doi.org/10.1016/j.ijbiomac.2020.06.040

    Article  CAS  Google Scholar 

  14. Liu H, Fan B, Fan G et al. (2021) Long-term protective mechanism of poly(N-methylaniline)/phosphate one-step electropolymerized coatings for copper in 3.5% NaCl solution. J Alloy Compd 872:159752. https://doi.org/10.1016/j.jallcom.2021.159752

    Article  CAS  Google Scholar 

  15. Brou YS, Coulibaly NH, Diki N’GYS, Creus J, Trokourey A (2020) Chitosan biopolymer effect on copper corrosion in 3.5 wt.% NaCl solution: Electrochemical and quantum chemical studies. Int J Corros Scale Inhib 9. https://doi.org/10.17675/2305-6894-2020-9-1-11

  16. Vinothkumar K, Rajkumar G, Sethuraman MG (2021) Enhancement of protection of copper through electropolymerised poly-2-amino-1,3,4-thiadiazole and its composite films. Mater Chem Phys 259:123987. https://doi.org/10.1016/j.matchemphys.2020.123987

    Article  CAS  Google Scholar 

  17. Vinothkumar K, Sethuraman MG (2021) Protection of copper from corrosion through electrodeposited poly-2,5-dimercapto-1,3,4-thiadiazole–TiO2 composite film. Polym Bull 78:15–34. https://doi.org/10.1007/s00289-019-03090-6

    Article  CAS  Google Scholar 

  18. Vinothkumar K, Sethuraman MG (2018) Corrosion inhibition ability of electropolymerised composite film of 2-amino-5-mercapto-1,3,4-thiadiazole/TiO2 deposited over the copper electrode in neutral medium. Mater Today Commun 14:27–39. https://doi.org/10.1016/j.mtcomm.2017.12.007

    Article  CAS  Google Scholar 

  19. Vinothkumar K, Sethuraman MG (2020) A robust method of enhancement of corrosion inhibitive ability of electrodeposited poly-3-amino-5-mercapto-1,2,4-triazole films over copper surface using graphene oxide. J Adhes Sci Technol 34:651–669. https://doi.org/10.1080/01694243.2019.1674599

    Article  CAS  Google Scholar 

  20. Rajkumar G, Sethuraman MG (2013) Electrosynthesis of a novel poly(3-amino-1,2,4-triazole) + TiO2 hybrid composite on copper and its corrosion protection. Ind Eng Chem Res 52:15057–15065. https://doi.org/10.1021/ie401444b

    Article  CAS  Google Scholar 

  21. Rajkumar G, Sethuraman MG (2014) Synthesis, characterization and corrosion protection of poly-4-methyl-3-mercapto-1,2,4-triazole/TiO2 composite on copper. Polym Bull 71:3249–3260. https://doi.org/10.1007/s00289-014-1248-5

    Article  CAS  Google Scholar 

  22. Rajkumar G, Sethuraman MG (2016) A novel hybrid composite coating of poly-3-amino-5-mercapto-1,2,4-triazole/TiO2 on copper for corrosion protection. Iran Polym J 25:119–128. https://doi.org/10.1007/s13726-015-0406-4

    Article  CAS  Google Scholar 

  23. Rajkumar G, Sethuraman MG (2015) Electrochemical synthesis of poly-3-amino-5-mercapto-1,2,4-triazole on copper and its protective effect in 3.5% NaCl medium. Res Chem Intermed 41:8041–8055. https://doi.org/10.1007/s11164-014-1876-2

    Article  CAS  Google Scholar 

  24. Rajkumar G, Sethuraman MG (2014) Corrosion protection ability of self-assembled monolayer of 3-amino-5-mercapto-1,2,4-triazole on copper electrode. Thin Solid Films 562:32–36. https://doi.org/10.1016/j.tsf.2014.03.074

    Article  CAS  Google Scholar 

  25. Rajkumar G, Sethuraman MG (2016) A study of copper corrosion inhibition by self-assembled films of 3-mercapto-1H-1,2,4-triazole. Res Chem Intermed 42:1809–1821. https://doi.org/10.1007/s11164-015-2119-x

    Article  CAS  Google Scholar 

  26. Rajkumar G, Sagunthala R, Sethuraman MG (2015) Investigation of inhibiting properties of self-assembled films of 4-aminothiophenol on copper in 3.5% NaCl. J Adhes Sci Technol 29:1107–1117. https://doi.org/10.1080/01694243.2015.1019391

    Article  CAS  Google Scholar 

  27. Dislich H (1971) New routes to multicomponent oxide glasses. Angew Chem Int Ed Engl 10:363–370. https://doi.org/10.1002/anie.197103631

    Article  CAS  Google Scholar 

  28. Matijevic E (1986) Monodispersed colloids: art and science. Langmuir 2:12–20. https://doi.org/10.1021/la00067a002

    Article  CAS  Google Scholar 

  29. Brinker SPM CJ (1981) Conversion of monolithic gels to glasses in a multicomponent silicate glass system. J Mater Sci 16:1980

    Article  Google Scholar 

  30. Sakka S, Kamiya K (1980) Glasses from metal alcoholates. J Non Cryst Solids 42:403–421. https://doi.org/10.1016/0022-3093(80)90040-X

    Article  CAS  Google Scholar 

  31. Peng S, Zhao W, Li H et al. (2013) The enhancement of benzotriazole on epoxy functionalized silica sol–gel coating for copper protection. Appl Surf Sci 276:284–290. https://doi.org/10.1016/j.apsusc.2013.03.083

    Article  CAS  Google Scholar 

  32. Perumal V, Mohamed NM, Mohamed Saheed MS, Mohamed Saheed MS (2019) Microtechnology and nanotechnology advancements toward bio-molecular targeting. In: Nanobiosensors for biomolecular targeting. Elsevier, Netherlands, pp 225–251.

  33. Tan ALK, Soutar AM (2008) Hybrid sol-gel coatings for corrosion protection of copper. Thin Solid Films 516:5706–5709. https://doi.org/10.1016/j.tsf.2007.07.066

    Article  CAS  Google Scholar 

  34. Boysen W, Frattini A, Pellegri N, de Sanctis O (1999) Protective coatings on copper prepared by sol–gel for industrial applications. Surf Coat Technol 122:14–17. https://doi.org/10.1016/S0257-8972(99)00402-8

    Article  CAS  Google Scholar 

  35. Eric Bescher JDM (2003) No title. J Sol-Gel Sci Technol 26:1223

    Article  Google Scholar 

  36. Li Y-S, Lu W, Wang Y, Tran T (2009) Studies of (3-mercaptopropyl)trimethoxylsilane and bis(trimethoxysilyl)ethane sol–gel coating on copper and aluminum. Spectrochim Acta Part A Mol Biomol Spectrosc 73:922–928. https://doi.org/10.1016/j.saa.2009.04.016

    Article  CAS  Google Scholar 

  37. Li Y-S, Ba A, Mahmood MS (2008) An environmentally friendly coating for corrosion protection of aluminum and copper in sodium chloride solutions. Electrochim Acta 53:7859–7862. https://doi.org/10.1016/j.electacta.2008.05.062

    Article  CAS  Google Scholar 

  38. Kiele E, Senvaitiene J, Griguceviciene A et al. (2016) Application of sol–gel method for the conservation of copper alloys. Microchem J 124:623–628. https://doi.org/10.1016/j.microc.2015.10.003

    Article  CAS  Google Scholar 

  39. Fan Y, Li C, Chen Z, Chen H (2012) Study on fabrication of the superhydrophobic sol–gel films based on copper wafer and its anti-corrosive properties. Appl Surf Sci 258:6531–6536. https://doi.org/10.1016/j.apsusc.2012.03.072

    Article  CAS  Google Scholar 

  40. Peng S, Zeng Z, Zhao W et al. (2014) Novel functional hybrid silica sol–gel coating for copper protection via in situ thiol–ene click reaction. RSC Adv 4:15776–15781. https://doi.org/10.1039/C4RA00142G

    Article  CAS  Google Scholar 

  41. Rao AV, Latthe SS, Mahadik SA, Kappenstein C (2011) Mechanically stable and corrosion resistant superhydrophobic sol–gel coatings on copper substrate. Appl Surf Sci 257:5772–5776. https://doi.org/10.1016/j.apsusc.2011.01.099

    Article  CAS  Google Scholar 

  42. Seifzadeh D, Golmoghani-Ebrahimi E (2012) Formation of novel and crack free nanocomposites based on sol gel process for corrosion protection of copper. Surf Coat Technol 210:103–112. https://doi.org/10.1016/j.surfcoat.2012.08.073

    Article  CAS  Google Scholar 

  43. Peng S, Zeng Z, Zhao W et al. (2014) Performance evaluation of mercapto functional hybrid silica sol–gel coating on copper surface. Surf Coat Technol 251:135–142. https://doi.org/10.1016/j.surfcoat.2014.04.017

    Article  CAS  Google Scholar 

  44. Karthik N, Sethuraman MG (2015) Improved copper corrosion resistance of epoxy-functionalized hybrid sol–gel monolayers by thiosemicarbazide. Ion 21:1477–1488. https://doi.org/10.1007/s11581-014-1274-1

    Article  CAS  Google Scholar 

  45. Peng S, Han J, Zhao W et al. (2015) The protection and degradation behaviors of mercapto functional sol-gel coating on copper surface. J Electrochem Soc 162:C128–C134. https://doi.org/10.1149/2.0091504jes

    Article  CAS  Google Scholar 

  46. Adhami S, Atapour M, Allafchian AR (2015) Corrosion protection of copper by silane sol–gel coatings. J Sol-Gel Sci Technol 74:800–809. https://doi.org/10.1007/s10971-015-3665-9

    Article  CAS  Google Scholar 

  47. Karthik N, Sethuraman MG (2015) Assessment of the corrosion protection ability of cysteamine and hybrid sol–gel twin layers on copper in 1% NaCl. RSC Adv 5:8693–8705. https://doi.org/10.1039/C4RA12138D

    Article  CAS  Google Scholar 

  48. Balaji J, Sethuraman MG (2016) Improved corrosion resistance by forming multilayers over a copper surface by electrodeposition followed by a novel sol–gel coating method. RSC Adv 6:95396–95404. https://doi.org/10.1039/C6RA19173H

    Article  CAS  Google Scholar 

  49. Balaji J, Sethuraman MG (2016) Corrosion protection of copper with 3-glycidoxypropyltrimethoxysilane-based sol–gel coating through 3-amino-5-mercapto-1,2,4-triazole doping. Res Chem Intermed 42:1315–1328. https://doi.org/10.1007/s11164-015-2087-1

    Article  CAS  Google Scholar 

  50. Sui W, Zhao W, Zhang X et al. (2016) Comparative anti-corrosion properties of alkylthiols SAMs and mercapto functional silica sol–gel coatings on copper surface in sodium chloride solution. J Sol–Gel Sci Technol 80:567–578. https://doi.org/10.1007/s10971-016-4108-y

    Article  CAS  Google Scholar 

  51. Balaji J, Sethuraman MG (2016) Corrosion protection of copper with hybrid sol-gel containing 1H-1, 2, 4-triazole-3-thiol. Iran J Chem Chem Eng 35:61. https://doi.org/10.30492/IJCCE.2016.23557

    Article  CAS  Google Scholar 

  52. Karthik N, Asha S, Sethuraman MG (2016) Influence of pH-sensitive 4-aminothiophenol on the copper corrosion inhibition of hybrid sol–gel monolayers. J Sol-Gel Sci Technol 78:248–257. https://doi.org/10.1007/s10971-015-3944-5

    Article  CAS  Google Scholar 

  53. Kesmez Ö, Akarsu E (2017) Corrosion-resistant hybrid coatings for copper surfaces substrates by sol-gel chemistry. J Turkish Chem Soc Sect A Chem 1. https://doi.org/10.18596/jotcsa.324873

  54. Raimondo M, Veronesi F, Boveri G et al. (2017) Superhydrophobic properties induced by sol-gel routes on copper surfaces. Appl Surf Sci 422:1022–1029. https://doi.org/10.1016/j.apsusc.2017.05.257

    Article  CAS  Google Scholar 

  55. Karthik N, Lee YR, Sethuraman MG (2017) Hybrid sol-gel/thiourea binary coating for the mitigation of copper corrosion in neutral medium. Prog Org Coat 102:259–267. https://doi.org/10.1016/j.porgcoat.2016.10.024

    Article  CAS  Google Scholar 

  56. Razavi F, Shabani-Nooshabadi M, Behpour M (2018) Sol-gel synthesis, characterization and electrochemical corrosion behavior of S-N-C-doped TiO2 nano coating on copper. J Mol Liq 266:99–105. https://doi.org/10.1016/j.molliq.2018.06.056

    Article  CAS  Google Scholar 

  57. Tian S, Liu Z, Shen L et al. (2018) Performance evaluation of mercapto functional hybrid silica sol–gel coating and its synergistic effect with f-GNs for corrosion protection of copper surface. RSC Adv 8:7438–7449. https://doi.org/10.1039/C7RA11435D

    Article  CAS  Google Scholar 

  58. Qin F (2020) Effect of deposition potential on preparation and corrosion resistance of SiO2 film on copper. Int J Electrochem Sci: 6478–6487. https://doi.org/10.20964/2020.07.49

  59. Balaji J, Roh S-H, Edison TNJI et al. (2020) Sol-gel based hybrid silane coatings for enhanced corrosion protection of copper in aqueous sodium chloride. J Mol Liq 302:112551. https://doi.org/10.1016/j.molliq.2020.112551

    Article  CAS  Google Scholar 

  60. Balaji J, Oh TH, Sethuraman MG (2021) Effects of pH on inhibitor-doped hybrid protective sol–gel coatings on the copper electrode surface. J Taiwan Inst Chem Eng 119:259–268. https://doi.org/10.1016/j.jtice.2021.02.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C1004283) and the authors thank the Core Research Support Center for Natural Products and Medical Materials (CRCNM) in Yeungnam University.

Author contribution

JB: Conceptualization, methodology, data curation, writing- original draft, preparation, software, validation. PBR: Visualization, editing. THO: Reviewing, supervision. MGS: Supervision.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Balaji, M. G. Sethuraman or T. H. Oh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaji, J., Raja, P.B., Sethuraman, M.G. et al. Recent studies on sol–gel based corrosion protection of Cu—A review. J Sol-Gel Sci Technol 103, 12–38 (2022). https://doi.org/10.1007/s10971-022-05818-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05818-9

Keywords

Navigation