Skip to main content
Log in

Structural, optical, surface, and photocatalytic properties of SnO2 films produced by ultrasonic spray pyrolysis

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Water pollution is a major threat for human health and living things worldwide. SnO2 films are special materials that attract attention in wastewater applications. However, their physical and chemical properties need to be improved to ensure their more efficient use and to increase their competitiveness with TiO2, which is the favorite of such applications. In this work, the effect of solution molarity on photocatalytic and physical properties of SnO2 films produced by ultrasonic spray pyrolysis was reported. Some physical properties were characterized using X-ray diffraction patterns, photoluminescence spectrometry and atomic force microcopy. Photocatalytic tests were carried out using methylene blue pollutant to investigate the potential use of SnO2 films. It was determined that SnO2 film produced from 0.05 M of SnCl4 solution has the highest performance (92.2%) in terms of photocatalytic degradation of methylene blue and could be easily reused for four cycles without significant change in the photocatalytic activity.

Graphical abstract

Highlights

  • The production of highly efficient and economical SnO2 catalysts was successfully carried out to remove organic pollutions in the wastewater.

  • High photocatalytic degradation value (92.2%) was successfully obtained when the molarity of SnCl4 solution is 0.05 M.

  • The photocatalytic properties of the SnO2 films changed significantly depending on the surface morphology, preferential growth direction and point defects (Sni and VO) of the photocatalyst.

  • SnO2 photocatalyst produced from 0.05 M of SnCl4 solution was easily reused for four cycles without significant change in the photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within this article. The raw data are available at the corresponding author and can be presented for reasonable requests.

References

  1. Zeng GM, Chen M, Zeng ZT (2013) Risks of neonicotinoid pesticides. Science 340(6139):1403. https://doi.org/10.1126/science.340.6139.1403-a

    Article  CAS  Google Scholar 

  2. Wang MK, Chamberland N, Breau L, Moser JE, Humphry-Baker R, Marsan B, Zakeeruddin SM, Grätzel M (2010) An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nat Chem 2(5):385–389. https://doi.org/10.1038/nchem.610

    Article  CAS  Google Scholar 

  3. Julkapli NM, Bagheri S, Bee Abd Hamid S (2014) Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. Sci World J 2014:692307 1–25. https://doi.org/10.1155/2014/692307

    Article  CAS  Google Scholar 

  4. Anwer H, Mahmood A, Lee J, Kim K, Park J, Yip ACK (2019) Photocatalysts for degradation of dyes in industrial effluents: opportunities and challenges. Nano Res 12(5):955–972. https://doi.org/10.1007/s12274-019-2287-0

    Article  CAS  Google Scholar 

  5. Kommineni S, Zoeckler J, Stocking A, Liang S, Flores A, Kavanaugh M, Rodriguez R, Browne T, Robert R, Brown A, Stocking A (2006) 3.0 Advanced Oxidation Processes, Center for Groundwater Restoration and Protection National Water Research Institute

  6. Wang J, Lv Y, Zhang L, Liu B, Jiang R, Han G, Xu R, Zhang X (2010) Sonocatalytic degradation of organic dyes and comparison of catalytic activities of CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites under ultrasonic irradiation. Ultrason Sonochem 17(4):642–648. https://doi.org/10.1016/j.ultsonch.2009.12.016

    Article  CAS  Google Scholar 

  7. Vinodgopal K, Kamat PV (1995) Enhanced rates of photocatalytic degradation of an Azo dye using SnO2/TiO2 coupled semiconductor thin films. Environ Sci Technol 29(3):841–845. https://doi.org/10.1021/es00003a037

    Article  CAS  Google Scholar 

  8. Pouretedal HR, Norozi A, Keshavarz MH, Semnani A (2009) Nanoparticles of zinc sulfide doped with manganese, nickel and copper as nanophotocatalyst in the degradation of organic dyes. J Hazard Mater 162(2-3):674–681. https://doi.org/10.1016/j.jhazmat.2008.05.128

    Article  CAS  Google Scholar 

  9. Daneshvar N, Salari D, Khataee AR (2004) Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J Photochem Photobiol A Chem 162(2-3):317–322. https://doi.org/10.1016/S1010-6030(03)00378-2

    Article  CAS  Google Scholar 

  10. Borges PD, Scolfaro LMR, Alves WL, Dasilvajr EF (2010) DFT study of the electronic, vibrational, and optical properties of SnO2. Theor Chem Acc 126:39–44. https://doi.org/10.1007/s00214-009-0672-3

    Article  CAS  Google Scholar 

  11. Zhang Y, Wang C, Mao Z, Wang N (2007) Preparation of nanometer-sized SnO2 by the fusion method. Mater Lett 61(4-5):1205–1209. https://doi.org/10.1016/j.matlet.2006.06.083

    Article  CAS  Google Scholar 

  12. Hamrouni A, Moussa N, Parrino F, Di Paola A, Houas A, Palmisano L (2014) Sol–gel synthesis and photocatalytic activity of ZnO–SnO2 nanocomposites. J Mol Catal A Chem 390:133–141. https://doi.org/10.1016/j.molcata.2014.03.018

    Article  CAS  Google Scholar 

  13. Han K, Peng XL, Li F, Yao MM (2018) SnO2 composite films for enhanced photocatalytic activities. Catalysts 8:453-1-12. https://doi.org/10.3390/catal8100453

    Article  CAS  Google Scholar 

  14. Rashad MM, Ismail AA, Osama I, Ibrahim IA, Kandil AHT (2014) Photocatalytic decomposition of dyes using ZnO doped SnO2 nanoparticles prepared by solvothermal method. Arab J Chem 7:71–77. https://doi.org/10.1016/j.arabjc.2013.08.016

    Article  CAS  Google Scholar 

  15. Ynineb F, Hafdallah A, Aida MS, Attaf N, Bougdira J, Rinnert H, Rahmane S (2013) Influence of Sn content on properties of ZnO:SnO2 thin films deposited by ultrasonic spray pyrolysis. Mater Sci Semicond Process 16(6):2021–2027. https://doi.org/10.1016/j.mssp.2013.07.023

    Article  CAS  Google Scholar 

  16. Singh R, Kumar M, Shankar S, Singh R, Ghosh AK, Thakur OP, Das B (2015) Effects of Sb, Zn doping on structural, electrical and optical properties of SnO2 thin films. Mater Sci Semicond Process 31:310–314. https://doi.org/10.1016/j.mssp.2014.12.010

    Article  CAS  Google Scholar 

  17. Testoni GO, Amoresi RAC, Lustosa GMMM, Costa JPC, Nogueira MV, Ruiz M, Zaghete MA, Perazolli LA (2018) Increased photocatalytic activity induced by TiO2/Pt/SnO2 heterostructured films. Solid State Sci 76:65–73. https://doi.org/10.1016/j.solidstatesciences.2017.12.006

    Article  CAS  Google Scholar 

  18. Vadivel S, Rajarajan G (2015) Effect of W doping on structural, optical and photocatalytic activity of SnO2 nanostructure thin films. J Mater Sci: Mater Electron 26:7127–7133. https://doi.org/10.1007/s10854-015-3335-2

    Article  CAS  Google Scholar 

  19. Dohcevic-Mitrovic ZD, Araújo VD, Radovic M, Aškrabic S, Costa GR, Bernardi MIB, Djokic DM, Stojadinovic B, Nikolic MG (2020) Influence of oxygen vacancy defects and cobalt doping on optical, electronic and photocatalytic properties of ultrafine SnO2-δ nanocrystals, process. Appl Ceram 14(2):102–112. https://doi.org/10.2298/PAC2002102D

    Article  CAS  Google Scholar 

  20. Minami T, Takata S, Sato H, Sonohara H (1095) Properties of transparent zinc‐stannate conducting films prepared by radio frequency magnetron sputtering. J Vac Sci Technol A Vac Surf Films 13(3):1995–1099. https://doi.org/10.1116/1.579592

    Article  Google Scholar 

  21. Lu YM, Jiang J, Xia C, Kramm B, Polity A, He YB, Klar PJ, Meyer BK (2015) The influence of oxygen flow rate on properties of SnO2 thin films grown epitaxially on c-sapphire by chemical vapor deposition. Thin Solid Films 594:270–276. https://doi.org/10.1016/j.tsf.2015.04.010

    Article  CAS  Google Scholar 

  22. Noh MFM, Soh MF, Teh CH, Lim EL, Yap CC, Ibrahim MA, Ludin NA, Teridi MAM (2017) Effect of temperature on the properties of SnO2 layer fabricated via AACVD and its application in photoelectrochemical cells and organic photovoltaic devices. Sol Energy 158:474–482. https://doi.org/10.1016/j.solener.2017.09.048

    Article  CAS  Google Scholar 

  23. Zhu X, Guo Z, Zhang P, Du GG, Zeng R, Chen Z, Liu H (2009) Tin oxide thin film with three‐dimensional ordered reticular morphology as a lithium ion battery anode. Chem Phys Chem 10(17):3101–3104. https://doi.org/10.1002/cphc.200900546

    Article  CAS  Google Scholar 

  24. Uddin MT, Sultana Y, Islam MA (2016) Nano-sized SnO2 photocatalysts: synthesis, characterization and their application for the degradation of methylene blue dye. J Sci Res 8(3):399–411. https://doi.org/10.3329/jsr.v8i3.27524

    Article  CAS  Google Scholar 

  25. Tsunekawa S, Kang J, Asami K, Kawazoe Y, Kasuya A (2002) Size and time dependences of the valence states of Sn ions in amphoteric tin oxide nanoparticles. Appl Surf Sci 201(1-4):69–74. https://doi.org/10.1016/S0169-4332(02)00516-0

    Article  CAS  Google Scholar 

  26. Ramamoorthy R, Kennedy MK, Nienhaus H, Lorke A, Kruis FE, Fissan H (2003) Surface oxidation of monodisperse SnOx nanoparticles, Sens. Actuators B-Chem 88(3):281–285. https://doi.org/10.1016/S0925-4005(02)00370-2

    Article  CAS  Google Scholar 

  27. Khan R, Kim TJ (2009) Preparation and application of visible-light-responsive Ni-doped and SnO2-coupled TiO2 nanocomposite photocatalysts. J Hazard Mater 163(2-3):1179–1184. https://doi.org/10.1016/j.jhazmat.2008.07.078

    Article  CAS  Google Scholar 

  28. Bhosale R, Pujari S, Muley G, Pagare B, Gambhire A (2013) Visible-light-activated nanocomposite photocatalyst of Cr2O3/SnO2. J Nanostruct Chem 3:46-1-7. https://doi.org/10.1186/2193-8865-3-46

    Article  Google Scholar 

  29. Bargougui R, Oueslati A, Schmerber G, Ulhaq-Bouillet C, Colis S, Hlel F, Amma S, Dinia A (2014) Structural, optical and electrical properties of Zn-doped SnO2 nanoparticles synthesized by the co-precipitation technique. J Mater Sci Mater Electron 25:2066–2071. https://doi.org/10.1007/s10854-014-1841-2

    Article  CAS  Google Scholar 

  30. Wang Y, Fan C, Hua B, Liang Z, Sun Y (2009) Photoelectrocatalytic activity of two antimony doped SnO2 films for oxidation of phenol pollutants. Trans Nonferrous Met Soc China 19(3):778–783. https://doi.org/10.1016/S1003-6326(08)60349-0

    Article  CAS  Google Scholar 

  31. Wang C, Xu BQ, Wang X, Zhao J (2005) Preparation and photocatalytic activity of ZnO/TiO2/SnO2 mixture. J Solid State Chem 178(11):3500–3506. https://doi.org/10.1016/j.jssc.2005.09.005

    Article  CAS  Google Scholar 

  32. Bandara J, Tennakone K, Jayatilaka PPB (2002) Composite tin and zinc oxide nanocrystalline particles for enhanced charge separation in sensitized degradation of dyes. Chemosphere 49(4):439–445. https://doi.org/10.1016/S0045-6535(02)00306-5

    Article  CAS  Google Scholar 

  33. Zhang M, An T, Hu X, Wang C, Sheng G, Fu J (2004) Preparation and photocatalytic properties of a nanometer ZnO-SnO2 coupled oxide. Appl Catal A Gen 260:215–222. https://doi.org/10.1016/j.apcata.2003.10.025

    Article  CAS  Google Scholar 

  34. Shifu C, Lei C, Shen G, Gengyu C (2006) The preparation of coupled SnO2/TiO2 photocatalyst by ball milling. Mater Chem Phys 98(1):116–120. https://doi.org/10.1016/j.matchemphys.2005.08.073

    Article  CAS  Google Scholar 

  35. Melghit K, Mohammed AK, Al-Amri I (2005) Chimie douce preparation, characterization and photocatalytic activity of nanocrystalline SnO2. Mater Sci Eng B 117(3):302–306. https://doi.org/10.1016/j.mseb.2004.12.021

    Article  CAS  Google Scholar 

  36. Ahmed A, Siddique MN, Alam U, Ali T, Tripathi P (2019) Improved photocatalytic activity of Sr doped SnO2 nanoparticles: A role of oxygen vacancy. Appl Surf Sci 463:976–985. https://doi.org/10.1016/j.apsusc.2018.08.182

    Article  CAS  Google Scholar 

  37. Anandan K, Rajendran V (2015) Influence of dopant concentrations (Mn = 1, 2 and 3 mol%) on the structural, magnetic and optical properties and photocatalytic activities of SnO2 nanoparticles synthesized via the simple precipitation process. Superlattices Microstruct 85:185–197. https://doi.org/10.1016/j.spmi.2015.05.031

    Article  CAS  Google Scholar 

  38. Al-Hamdi AM, Rinner U, Sillanpää M (2017) Tin dioxide as a photocatalyst for water treatment: A review. Process Saf Environ 107:190–205. https://doi.org/10.1016/j.psep.2017.01.022

    Article  CAS  Google Scholar 

  39. Pan X, Yang M-Q, Fu X, Zhang N, Xu Y-J (2013) Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 5:3601–3614. https://doi.org/10.1039/C3NR00476G

    Article  CAS  Google Scholar 

  40. Benramdane N, Murad WA, Misho RH, Ziane M, Kebbab Z (1997) A chemical method for the preparation of thin films of CdO and ZnO. Mater Chem Phys 48(2):119–123. https://doi.org/10.1016/S0254-0584(97)80104-6

    Article  CAS  Google Scholar 

  41. Vigil O, Cruz F, Acevedo AM, Puente GC, Vaillant L, Santana G (2001) Structural and optical properties of annealed CdO thin films prepared by spray pyrolysis. Mater Chem Phys 68(1-3):249–252. https://doi.org/10.1016/S0254-0584(00)00358-8

    Article  CAS  Google Scholar 

  42. Eufinger K, Poelman D, Poelman H, De Gryse R, Marin GB (2008) TiO2 thin films for photocatalytic applications. In: Nam SC (ed) Thin solid films: process and applications, pp 189–227

  43. Marikkannan M, Vishnukanthan V, Vijayshankar A, Mayandi J, Pearce JM (2015) A novel synthesis of tin oxide thin films by the sol-gel process for optoelectronic applications. AIP Adv 5(2):027122-1-8. https://doi.org/10.1063/1.4909542

    Article  CAS  Google Scholar 

  44. Her Y, Wu J (2006) Low-temperature growth and blue luminescence of SnO2 nanoblades. Appl Phys Lett 89(4):043115-1-3. https://doi.org/10.1063/1.2235925

    Article  CAS  Google Scholar 

  45. Jeong J, Choi SP, Hong KJ (2006) Structural and optical properties of SnO2 thin films deposited by using CVD techniques. J Korean Phys Soc 48(5):960–963

    CAS  Google Scholar 

  46. Akyol A, Yatmaz HC, Bayramoglu M (2004) Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions. Appl Catal B 54(1):19–24. https://doi.org/10.1016/j.apcatb.2004.05.021

    Article  CAS  Google Scholar 

  47. Ajmal A, Majeed I, Malik RN, Idriss H, Nadeem MA (2014) Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv 4:37003–37026. https://doi.org/10.1039/C4RA06658H

    Article  CAS  Google Scholar 

  48. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes inaqueous solution: kinetic and mechanistic investigations. Appl Catal B 49(1):1–14. https://doi.org/10.1016/j.apcatb.2003.11.010

    Article  CAS  Google Scholar 

  49. Xiao Q, Si Z, Zhang J, Xiao C, Tan X (2008) Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline. J Hazard Mater 150:62–67. https://doi.org/10.1016/j.jhazmat.2007.04.045

    Article  CAS  Google Scholar 

  50. Viet PV, Thi CM, Hieu LV (2016) The high photocatalytic activity of SnO2 nanoparticles synthesized by hydrothermal method. J Nanomater 4231046:1–8. https://doi.org/10.1155/2016/4231046

    Article  CAS  Google Scholar 

  51. Zeferino RS, Pal U, Reues MEDA, Rosas ER (2019) Indium doping induced defect structure evolution and photocatalytic activity of hydrothermally grown small SnO2 nanoparticles. Adv Nano Res 7(1):13–24. https://doi.org/10.12989/anr.2019.7.1.013

    Article  Google Scholar 

  52. Das OR, Uddin MT, Rahman MM, Bhoumick MC (2018) Highly active carbon supported Sn/SnO2 photocatalysts for degrading organic dyes. IOP Conf Ser: J Phys 1086:01201-1-7. https://doi.org/10.1088/1742-6596/1086/1/012011

    Article  CAS  Google Scholar 

  53. Prakash K, Kumar PS, Pandiaraj S, Saravanakumar K, Karuthapandian S (2016) Controllable synthesis of SnO2 photocatalyst with superior photocatalytic activity for the degradation of methylene blue dye solution. J Exp Nanosci 11(14):1138–1155. https://doi.org/10.1080/17458080.2016.1188222

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the Eskişehir Osmangazi University Scientific Research Projects Commission through its research support (Project code: 201619028–2016-1047).

Author contributions

FA: Methodology, investigation, formal analysis, writing—original draft, visualization, and supervision. IA: Methodology, conceptualization, resources, formal analysis, and investigation.

Funding

Eskişehir Osmangazi University Scientific Research Projects (Project code: 201619028–2016-1047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferhunde Atay.

Ethics declarations

Conflict of interest

The authors declare no competing interests. The corresponding author, declare that this paper is original, has not been published before and is not currently being considered for publication elsewhere. He can confirm that the paper has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. He further confirm that the order of authors listed in the paper has been approved by all of us.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atay, F., Akyuz, I. Structural, optical, surface, and photocatalytic properties of SnO2 films produced by ultrasonic spray pyrolysis. J Sol-Gel Sci Technol 102, 303–312 (2022). https://doi.org/10.1007/s10971-022-05783-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05783-3

Keywords

Navigation