Skip to main content

Advertisement

Log in

TiO2-HA composites obtained by combination of sol–gel synthesis and a supercritical CO2 drying process

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

An effective method for the synthesis of TiO2–HA composite materials by sol–gel followed by carbon dioxide supercritical drying, is presented. The influence of the amount of hydroxyapatite (HA) in the dioxide of titanium (TiO2) matrix on the crystalline structure and microstructure development of the composites is discussed. Rheological measurements were carried out in order to compare gelation times of precursors with low, medium, and high HA contents. Composites were analyzed by XRD, Raman spectroscopy, FTIR and SEM techniques. The results indicated that the proposed synthesis method leads to TiO2 anatase matrices with dispersed HA nanoparticles up to 30% approximately with gelation times of about 5 min.

This graph shows each of the stages of the sol–gel method used to obtain the TiO2–HA composite materials. In addition, the microstructure of the materials in the different stages is presented in a representative way.

Highlights

  • The versatility of the sol–gel method allowed the formation of a TiO2 matrix with dispersed HA nanoparticles (up to 30%), without destabilizing the system.

  • The drying of the TiO2–HA composite gels with supercritical CO2 resulted in porous materials without damage to the macro and microstructure, being the combination of these two techniques higher than conventional methods for obtaining this type of materials.

  • By increasing the HA content in the precursor gels porosity was increased and the TiO2 anatase transition to rutile was delayed.

  • There is no evidence of the formation of secondary phases, the interaction of HA with TiO2 was confirmed by the Raman band at 796 cm−1 in the TiO2–HA composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data presented are real and transparent.

References

  1. Mazumder S, Nayak AK, Ara TJ, Hasnain MS (2018) Hydroxyapatite composites for dentistry. In: Asiri AM, Inamuddin, Mohammad A. (eds) Applications of nanocomposite materials in dentistryI, Elsevier Inc. 1st edn. Woodhead Publishing, Sawston. https://doi.org/10.1016/B978-0-12-813742-0.00007-9

  2. Okamoto M (2019) The role of scaffolds in tissue engineering. In: Mozafari M, Sefat F, Atala A (eds.) Handbook of tissue engineering scaffolds: Elsevier Ltd, Vol. 1. Woodhead Publishing, Sawston. https://doi.org/10.1016/B978-0-08-102563-5.00002-2

  3. Nathanael AJ, Lee JH, Mangalaraj D et al. (2012) Multifunctional properties of hydroxyapatite/titania bio-nano-composites: bioactivity and antimicrobial studies. Powder Technol 228:410–415. https://doi.org/10.1016/j.powtec.2012.06.001

    Article  CAS  Google Scholar 

  4. Khan MUA, Haider S, Shah SA et al. (2020) Arabinoxylan-co-AA/HAp/TiO2 nanocomposite scaffold a potential material for bone tissue engineering: An in vitro study. Int J Biol Macromol 151:584–594. https://doi.org/10.1016/j.ijbiomac.2020.02.142

    Article  CAS  Google Scholar 

  5. Pai S, Kini MS, Selvaraj R, Pugazhendhi A (2020) A review on the synthesis of hydroxyapatite, its composites and adsorptive removal of pollutants from wastewater. J Water Process Eng 38:101574. https://doi.org/10.1016/j.jwpe.2020.101574

    Article  Google Scholar 

  6. Singh N, Batra U, Kumar K, Mahapatro A (2020) Investigating TiO2–HA–PCL hybrid coating as an efficient corrosion resistant barrier of ZM21 Mg alloy. J Magnes Alloy. https://doi.org/10.1016/j.jma.2020.08.003

  7. Khattab RM, Badr HA, Zawrah MF (2018) Effect of processing techniques on properties of porous TiO2 and TiO2/hydroxyapatite composites. Ceram Int 44:8643–8649. https://doi.org/10.1016/j.ceramint.2018.02.084

    Article  CAS  Google Scholar 

  8. Hasmaliza M, Foo HS, Mohd K (2016) Anatase as antibacterial material in ceramic tiles. Procedia Chem 19:828–834. https://doi.org/10.1016/j.proche.2016.03.109

    Article  CAS  Google Scholar 

  9. Lee HU, Lee SC, Lee SM et al. (2013) Improved photocatalytic and antibacterial activities of three-dimensional polycrystalline anatase TiO2 photocatalysts. Appl Catal A Gen 467:394–399. https://doi.org/10.1016/j.apcata.2013.07.042

    Article  CAS  Google Scholar 

  10. Tao T, Bae IT, Woodruff KB et al. (2019) Hydrothermally-grown nanostructured anatase TiO2 coatings tailored for photocatalytic and antibacterial properties. Ceram Int 45:23216–23224. https://doi.org/10.1016/j.ceramint.2019.08.017

    Article  CAS  Google Scholar 

  11. Anderson C, Bard AJ (1997) Improved photocatalytic activity and characterization of mixed TiO2/SiO2 and TiO2/Al2O3 materials. J Phys Chem B 101:2611–2616. https://doi.org/10.1016/S0169-4332(98)00318-3

    Article  CAS  Google Scholar 

  12. Francisco MSP, Mastelaro VR (2002) Inhibition of the anatase-rutile phase transformation with addition of CeO2 to CuO-TiO2 system: Raman spectroscopy, X-ray diffraction, and textural studies. Chem Mater 14:2514–2518. https://doi.org/10.1021/cm011520b

    Article  CAS  Google Scholar 

  13. Byrne C, Moran L, Hermosilla D et al. (2019) Effect of Cu doping on the anatase-to-rutile phase transition in TiO2 photocatalysts: Theory and experiments. Appl Catal B Environ 246:266–276. https://doi.org/10.1016/j.apcatb.2019.01.058

    Article  CAS  Google Scholar 

  14. Rath PC, Besra L, Singh BP, Bhattacharjee S (2012) Titania/hydroxyapatite bi-layer coating on Ti metal by electrophoretic deposition: characterization and corrosion studies. Ceram Int 38:3209–3216. https://doi.org/10.1016/j.ceramint.2011.12.026

    Article  CAS  Google Scholar 

  15. Anmin H, Tong L, Ming L et al. (2006) Preparation of nanocrystals hydroxyapatite/TiO2 compound by hydrothermal treatment. Appl Catal B Environ 63:41–44. https://doi.org/10.1016/j.apcatb.2005.08.003

    Article  CAS  Google Scholar 

  16. Fidancevska E, Ruseska G, Bossert J et al. (2007) Fabrication and characterization of porous bioceramic composites based on hydroxyapatite and titania. Mater Chem Phys 103:95–100. https://doi.org/10.1016/j.matchemphys.2007.01.015

    Article  CAS  Google Scholar 

  17. Fomby P, Cherlin AJ, Hadjizadeh A et al. (2010) State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. Ann Am Thorac Soc 12:181–204. https://doi.org/10.1002/term

    Article  Google Scholar 

  18. Yao HL, Yang C, Yang Q et al. (2020) Structure, mechanical and bioactive properties of nanostructured hydroxyapatite/titania composites prepared by microwave sintering. Mater Chem Phys 241:122340. https://doi.org/10.1016/j.matchemphys.2019.122340

    Article  CAS  Google Scholar 

  19. Saber-samandari S, Yekta H, Ahmadi S, Alamara K (2018) The role of titanium dioxide on the morphology, microstructure, and bioactivity of grafted cellulose/hydroxyapatite nanocomposites for a potential application in bone repair. Int J Biol Macromol 106:481–488. https://doi.org/10.1016/j.ijbiomac.2017.08.031

    Article  CAS  Google Scholar 

  20. Hernández Ortiz GM, Parra R, Fanovich MA (2018) Comparative hydrothermal synthesis of hydroxyapatite by using cetyltrimethylammonium bromide and hexamethylenetetramine as additives. Ceram Int 44:3658–3663. https://doi.org/10.1016/j.ceramint.2017.11.120

    Article  CAS  Google Scholar 

  21. Doeuff S, Henry M, Sanchez C, Livage J (1987) Hydrolysis of titanium alkoxides: modification of the molecular precursor by acetic acid. J Non Cryst Solids 89:206–216. https://doi.org/10.1016/S0022-3093(87)80333-2

    Article  CAS  Google Scholar 

  22. Reghunath S, Pinheiro D, KR SD (2021) A review of hierarchical nanostructures of TiO2: advances and applications. Appl Surf Sci Adv 3:100063. https://doi.org/10.1016/j.apsadv.2021.100063

    Article  Google Scholar 

  23. Cerhová M, Matějová L, Jandová V et al. (2018) Preparation of nanocrystalline TiO2 monoliths by using modified supercritical carbon dioxide. J Supercrit Fluids 137:93–100. https://doi.org/10.1016/j.supflu.2018.02.001

    Article  CAS  Google Scholar 

  24. Eggers R, Lack E (2012) In: Eggers R (ed) Industrial high pressure applications. Wiley‐VCH Verlag GmbH & Co. KGaA, pp. 202–203

  25. Cipreste MF, Rezende MR, de, Hneda ML et al. (2018) Functionalized-radiolabeled hydroxyapatite/tenorite nanoparticles as theranostic agents for osteosarcoma. Ceram Int 44:17800–17811. https://doi.org/10.1016/j.ceramint.2018.06.248

    Article  CAS  Google Scholar 

  26. Salarian M, Xu WZ, Wang Z et al. (2014) Hydroxyapatite-TiO2-based nanocomposites synthesized in supercritical CO2 for bone tissue engineering: physical and mechanical properties. ACS Appl Mater Interfaces 6:16918–16931. https://doi.org/10.1021/am5044888

    Article  CAS  Google Scholar 

  27. Hanaor DAH, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874. https://doi.org/10.1007/s10853-010-5113-0

    Article  CAS  Google Scholar 

  28. Yoganarasimhan SR, Rao NR (1962) Mechanism of crystal structure transformations. Trans Faraday Soc 58:1579–1589. https://doi.org/10.1039/TF9625801579

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge CONICET, FONCyT and Universidad Nacional de Mar del Plata for the financial support given to this work.

Funding

This work was financed by CONICET, FONCyT and Universidad Nacional de Mar del Plata.

Author information

Authors and Affiliations

Authors

Contributions

GMHO: Methodology, Formal analysis, Investigation, Writing, original draft, Visualization. RP: Conceptualization, Methodology, Formal analysis, Investigation, Resources, Writing - original draft, Writing - review & editing, Supervision. VF: Formal analysis, Investigation, Resources. MAF: Conceptualization, Methodology, Formal analysis, Investigation, Resources, Writing - original draft, Writing - review & editing, Supervision, Project administration.

Corresponding author

Correspondence to Gloria M. Hernández Ortiz.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz, G.M.H., Parra, R., Fuchs, V. et al. TiO2-HA composites obtained by combination of sol–gel synthesis and a supercritical CO2 drying process. J Sol-Gel Sci Technol 101, 205–214 (2022). https://doi.org/10.1007/s10971-021-05659-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05659-y

Keywords

Navigation