Skip to main content
Log in

Submicron-sized anatase, TiO2 with high photocatalytic activity, and (Ti, Sn)O2 nanocrystals formed via hydrothermal technique

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The compositional dependence of the crystalline phase and properties of precipitates (Ti x Sn1−x O2) in the TiO2–SnO2 system, which were hydrothermally formed at 100–200 °C from the precursor solutions of TiCl4 and SnCl4 under weakly basic conditions in the presence of tetramethylammonium hydroxide (TMAH) was investigated. Rutile-type (Ti, Sn)O2 solid solutions with nano-sized crystallite were directly formed at 180 °C in the composition range of x = 0–0.8. Nanoparticles with anatase crystallite around 10 nm as a main crystalline phase of precipitates that were formed in the compositions x = 0.9 and 1.0 showed similar photocatalytic activity. As the hydrothermal treatment temperature rose from 100 to 200 °C, the crystallite size of rutile solid solution, Ti0.5Sn0.5O2, increased from 2.5 to 8.0 nm. The optical band gap of the samples changed in the range of 2.93–3.25 eV depending on their composition in the system. At the composition of x = 1.0, submicron-sized anatase-type pure TiO2 particles (sizes of cuboid sides are around 100–120 nm) with pretty high crystallinity and superior photocatalytic activity were formed from the aqueous solution of TiCl4 under basic hydrothermal condition at 180 °C in the presence of TMAH with concentration as 1.3 times high as the condition in the case of the nano-sized anatase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gordon RG (2000) Criteria for choosing transparent conductors. MRS Bull 25:52–57

    Article  Google Scholar 

  2. Yang T, Qin X, Wang Hh, Jia Q, Yu R, Wang B, Wang J, Ibrahim K, Jiang X, He Q (2010) Preparation and application in p-n homojunction diode of p-type transparent conducting Ga-doped SnO2 thin films. Thin Solid Films 518:5542–5545

    Article  Google Scholar 

  3. Cao L, Spiess FJ, Huang A, Suib SL, Obee TN, Hay SO, Freihaut JD (1999) Heterogeneous photocatalytic oxidation of 1-butene on SnO2 and TiO2 films. J Phys Chem B 103:2912–2917

    Article  Google Scholar 

  4. Prasad RM, Gurlo A, Riedel R, Huebner M, Barsan N, Weimar U (2010) Microporous ceramic coated SnO2 sensors for hydrogen and carbon monoxide sensing in harsh reducing conditions. Sens Actuat B 149:105–109

    Article  Google Scholar 

  5. Radecka M, Zakrzewska K, Rekas M (1998) SnO2–TiO2 solid solutions for gas sensors. Sens Actuat B 47:194–204

    Article  Google Scholar 

  6. Tai WP, Oh JH (2002) Fabrication and humidity sensing properties of nanostructured TiO2–SnO2 thin films. Sens Actuat B 85:154–157

    Article  Google Scholar 

  7. Lin J, Yu JC, Lo D, Lam SK (1999) Photocatalytic activity of rutile Ti1−x Sn x O2 solid solutions. J Catal 183:368–372

    Article  Google Scholar 

  8. Tada H, Hattori A, Tokihisa Y, Imai K, Tohge N, Ito S (2000) A patterned-TiO2/SnO2 bilayer type photocatalyst. J Phys Chem B 104:4585–4587

    Article  Google Scholar 

  9. Fresno F, Coronado JA, Tudela D, Soria J (2005) Influence of the structural characteristics of Ti1-xSnxO2 nanoparticles on their photocatalytic activity for the elimination of methylcyclohexane vapors. Appl Catal B 55:159–167

    Article  Google Scholar 

  10. Cai ZQ, Shen QH, Gao JW, Yang H (2007) Low-temperature preparation of TiO2/SnO2 composite film and its photocatalytic activity. J Inorg Mater 22:733–736

    Google Scholar 

  11. Kutty TRN, Avudaithai M (1989) Photocatalytic activity on tin-substituted titanium dioxide in visible light. Chem Phys Lett 163:93–97

    Article  Google Scholar 

  12. Sayilkan F, Asiltuerk M, Tatar P, Kiraz N, Sener S, Arpac E, Sayilkan H (2008) Photocatalytic performance of Sn-doped TiO2 nanostructured thin films for photocatalytic degradation of malachite green dye under UV and VIS-lights. Mater Res Bull 43:127–134

    Article  Google Scholar 

  13. Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357

    Article  Google Scholar 

  14. Carp O, Huisman CL, Reller A (2004) Photoinduced reactivity of titanium dioxide. Prog Solid State Chem 32:33–177

    Article  Google Scholar 

  15. Bach U, Lupo D, Comte P, Moser JE, Weissortel F, Salbeck J, Spreitzer H, Graetzel M (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395:583–585

    Article  Google Scholar 

  16. Park JY, Song SJ, Wachsman ED (2010) Highly sensitive/selective miniature potentiometric carbon monoxide gas sensors with titania-based sensing elements. J Am Ceram Soc 93:1062–1068

    Article  Google Scholar 

  17. Furubayashi Y, Hitosugi T, Yamamoto Y, Inaba K, Kinoda G, Hirose Y, Shimada T, Hasegawa T (2005) A transparent metal: Nb-doped anatase TiO2. Appl Phys Lett 86;252101

  18. Huang SY, Kavan L, Exnar I, Graetzel M (1995) Rocking chair lithium battery based on nanocrystalline TiO2 (anatase). J Electrochem Soc 142:L142–L144

    Article  Google Scholar 

  19. Sinclair WR, Loomis TC (1959) Measurements of diffusion in the system TiO2–SnO2. Kinet High-Temp Processes Conf Dedham Mass 1958:58–61

    Google Scholar 

  20. Drobeck DL, Virkar AV, Cohen RM (1990) 1. The effect of aliovalent dopants on cation diffusion in titanium dioxide–tin dioxide. J Phys Chem Solids 51:977–988

    Article  Google Scholar 

  21. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid–phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946

    Article  Google Scholar 

  22. Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact 53:117–166

    Article  Google Scholar 

  23. Hirano M, Morikawa H, Inagaki M, Toyoda M (2002) Direct synthesis of new zircon-type ZrGeO4 and Zr(Ge, Si)O4 solid solutions. J Am Ceram Soc 85:1915–1920

    Article  Google Scholar 

  24. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1999) Titania nanotubes prepared by chemical processing. Adv Mater 11:1307–1311

    Article  Google Scholar 

  25. Yin AX, Min XQ, Zhang YW, Yan CH (2011) Shape-selective synthesis and facet-dependent enhanced electrocatalytic activity and durability of monodisperse sub-10 nm Pt–Pd tetrahedrons and cubes. J Am Chem Soc 133:3816–3819

    Article  Google Scholar 

  26. Hirano M, Kono T (2011) Hydrothermal synthesis of rutile-type complete solid solution nanoparticles in the TiO2–SnO2 system under acidic conditions. J Am Ceram Soc 94:3319–3326

    Article  Google Scholar 

  27. Hirano M, Kato E (1996) Hydrothermal synthesis and sintering of fine powders in CeO2–ZrO2 system. J Ceram Soc Jpn 104:958–962

    Article  Google Scholar 

  28. Hirano M, Ito T (2008) Direct formation of new, phase-stable, and photoactive anatase-type Ti1−2x Nb x Sc x O2 solid solution nanoparticles by hydrothermal method. Mater Res Bull 43:2196–2206

    Article  Google Scholar 

  29. Hernandez GP, Morales AE, Pal U, Anota EC (2012) Morphology evolution of hydrothermally grown ZnO nanostructures on gallium doping and their defect structures. Mater Chem Phys 135:810–817

    Article  Google Scholar 

  30. Sadhana K, Praveena K, Bharadwaj S, Murthy SR (2009) Microwave-hydrothermal synthesis of BaTiO3+NiCuZnFe2O4 nanocomposites. J Alloys Compd 472:484–488

    Article  Google Scholar 

  31. Hirano M, Dozono H (2013) Luminescence nanocrystals in the rare-earth niobate–zirconia system formed via hydrothermal method. J Solid State Chem 204:335–340

    Article  Google Scholar 

  32. Hirano M, Kono T (2011) Hydrothermal synthesis and properties of solid solutions and composite nanoparticles in the TiO2–SnO2 system. Mater Res Bull 46:13841390

    Article  Google Scholar 

  33. Hirano M, Ota K, Iwata H (2004) Direct formation of anatase (TiO2)/silica (SiO2) composite nanoparticles with high phase stability of 1300 °C from acidic solution by hydrolysis under hydrothermal condition. Chem Mater 16:3725–3732

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Hirano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirano, M., Takahashi, M. Submicron-sized anatase, TiO2 with high photocatalytic activity, and (Ti, Sn)O2 nanocrystals formed via hydrothermal technique. J Mater Sci 49, 8163–8170 (2014). https://doi.org/10.1007/s10853-014-8525-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8525-4

Keywords

Navigation