Skip to main content

Advertisement

Log in

Study of structural, morphological, Mössbauer and dielectric properties of NiFeCoO4 prepared by a sol gel method

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A methodical study on structural, electrical and dielectric properties of NiFeCoO4 nanoparticles, synthesized via sol-gel technique has been reported in this article. X-ray diffractogram confirmed phase purity of the synthesized sample. Raman spectra show the five predicted Raman bands that appear around 600–720, 250–360, 500–590, 450–520 and 180–220 cm−1 corresponding to A1g, Eg, T2g (3), T2g (2) and T2g (1), respectively. From the dielectric measurements, we have determined the different dielectric parameters such as the conductivity σac, complex permittivity ε*, complex impedance Z*, and the tangent loss (tanδ). The electrical properties strongly depend on temperature and frequency. The relaxation activation energy deduced from the Z” vs. frequency plots was similar to the conduction activation energy obtained from the conductivity. Hence, the same type of charge carriers are attributed to the relaxation process and the conduction mechanism. The complex impedance plots have revealed the presence of only one semicircular arc corresponding to grains and grain boundaries contributions at all the temperatures and an equivalent electric circuit was proposed as a model of the sample.

Highlights

  • The Ni0.5Zn0.5FeCoO4 spinel ferrite is synthesized by a sol-gel technique.

  • The temperature and frequency dependence of dielectric constants have been investigated.

  • The electrical properties are found to be strongly dependent on temperature and confirmed the presence of one semicircular arc by the Nyquist plots.

  • The analysis of the thermal variation of the imaginary part of the electrical modulus peak has indicated that the observed relaxation process is thermally activated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Willard MA, Kurihara LK, Harris EVG (2004) Chemically prepared magnetic nanoparticles. Int Mater Rev 49:125–170

    Article  CAS  Google Scholar 

  2. Mornet S, Vasseur S, Demourgues A (2006) Magnetic nanoparticle design for medical applications. Prog Solid State Chemi 34:237–247

    Article  CAS  Google Scholar 

  3. Chaudhary V, Chen X, Ramanujan RV (2019) Iron and manganese based magnetocaloric materials for near room temperature thermal management. Prog Mater Sci 100:64–98

    Article  CAS  Google Scholar 

  4. Jeong U, Teng X, Wang Y, Yang H, Xia Younan (2007) Superparamagnetic Colloids: Controlled Synthesis and Niche Applications. Adv Mater 19:33–60. et

    Article  CAS  Google Scholar 

  5. Moitra D, Ghosh BK, Vadera SR, Ghosh NN (2016) Synthesis of a Ni0.8Zn0.2Fe2O4–RGO nanocomposite: an excellent magnetically separable catalyst for dye degradation and microwave absorber. RSC Adv 6:14090–14096

    Article  CAS  Google Scholar 

  6. Oumezzine E, Hcini S, Baazaoui M, Oumezzine M (2015) Structural, magnetic and magnetocaloric properties of Zn0.6 − xNixCu0.4Fe2O4 ferrite nanoparticles prepared by Pechini sol-gel method. Powder Technol 278:189–195

    Article  CAS  Google Scholar 

  7. Hcini S, Selmi A, Rahmouni H, Omri A, Bouazizi ML (2017) Microstructural properties, conduction mechanism, dielectric behavior, impedance and electrical modulus of La0.6Sr0.2Na0.2MnO3 manganite. Ceram Int 43:2529–2536

    Article  CAS  Google Scholar 

  8. Singh J, Roychoudhury A, Lee DW, Malhotra BD (2013) Highly efficient bienzyme functionalized biocompatible nanostructured nickel ferrite–chitosan nanocomposite platform for biomedical application. J Phys Chem 117:8491–8502

    Article  CAS  Google Scholar 

  9. Saini A, Ravelo B, Thakur A, Thakur P, Lalléchère S (2016) Magneto-dielectric properties of doped ferrite based nanosized ceramics over very high frequency range. Int J Eng Sci Technol 19:911–916

    Google Scholar 

  10. ShyamK G, SantoshS J, Patange SM (2017) The structural and magnetic properties of dual phase cobalt ferrite. Sientific Rep 7:2524–2533

    Article  Google Scholar 

  11. Li F, Lui J, David E (2004) Stoichiometric Synthesis of Pure MFe2O4 (M = Mg, Co, and Ni) Spinel Ferrites from Tailored Layered Double Hydroxide (Hydrotalcite-Like) Precursors. Chem Mater 16:1597–1602

    Article  CAS  Google Scholar 

  12. Yaseneva P, Bowker M, Hutchings G (2011) Structural and magnetic properties of Zn-substituted cobalt ferrites prepared by co-precipitation method. Phys Chem Chem Phys 13:18609–18614

    Article  CAS  Google Scholar 

  13. Fernandes C, pereira C (2014) Tailored design of CoxMn1−xFe2O4 nanoferrites: a new route for dual control of size and magnetic properties. J Mater Chem C 2:5818–5828

    Article  CAS  Google Scholar 

  14. Islam MU, Ahmad Z, Chaudhry MA (2004) Electrical behaviour of fine particle, co-precipitation prepared Ni–Zn ferrites. Solid State Commun 130:353–356

    Article  CAS  Google Scholar 

  15. Upadhyay C, Mishra D, Anand S, Das RP (2003) Effect of preparation conditions on formation of nanophase Ni–Zn ferrites through hydrothermal technique. J Magn Magn Mater 260:188–194

    Article  CAS  Google Scholar 

  16. Liu C, Zou B, Rondinone AJ (2000) Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites. J Physi Chemi B 104:1141–1145

    Article  CAS  Google Scholar 

  17. Deraz NM, Abd-Elkader OH (2014) Synthesis and characterization of nanomagnetic CoFe2O4/PEVA composites. J Anal Appl Pyrolysis 106:171–176

    Article  CAS  Google Scholar 

  18. Kumar A, Sharma P, Varshney D (2014) Structural, vibrational and dielectric study of Ni doped spinel Co ferrites: Co1-xNixFe2O4 (x = 0.0, 0.5, 1.0). Ceram Intern 40:140–145

    Article  Google Scholar 

  19. Koseoglu Y, Alan F, Tan M (2012) Low Temperature Hydrothermal Synthesis and Characterization of Mn Doped Cobalt Ferrite Nanoparticles. Ceram Int 38:3625–3634

    Article  CAS  Google Scholar 

  20. Anwar MS, Ahmed F, Koo BH (2014) Enhanced relative cooling power of Ni1−xZnxFe2O4 (0.0 ⩽ x ⩽ 0.7) ferrites. Acta Mater 71:100–107

    Article  CAS  Google Scholar 

  21. Mahmood A, Warsi MF, Ashiq MN, Ishaq M (2013) Substitution of La and Fe with Dy and Mn in multiferroic La1−xDyxFe1−yMnyO3 nanocrystallites. J Magn Magn Mater 327:64–70

    Article  CAS  Google Scholar 

  22. Abdeen AM, Hemeda OM, Assem EE (2002) Structural, electrical and transport phenomena of Co ferrite substituted by Cd. J. Magn Magn Mater 238:75–83

    Article  CAS  Google Scholar 

  23. Ahmed MA, Afify HH, Azab AA (2012) Novel structural and magnetic properties of Mg doped copper nanoferrites prepared by conventional and wet methods. J Magn Magn Mater 324:2199–2204

    Article  CAS  Google Scholar 

  24. Hcini S, Zemni S, Triki A (2011) Size mismatch, grain boundary and bandwidth effects on structural, magnetic and electrical properties of Pr0.67Ba0.33MnO3 and Pr0.67Sr0.33MnO3 perovskites. J Alloy Comp 509:1394–1400

    Article  CAS  Google Scholar 

  25. Shirai H, Morioka H, Nakagawa I (1982) Infrared and Raman Spectra and Lattice Vibrations of Some Oxide Spinels. J Phys Soci Jpn 51:592–597

    Article  CAS  Google Scholar 

  26. V.D’Ippolito, G.B. Andreozzi, D. Bersani (2015) Raman finger print of chromate, aluminate and ferrite spinels. J Raman Spectrosc 46:1255–1264

    Article  Google Scholar 

  27. Al-Maashani M, Gismelseed AM, Khalaf KAM, Yousif AliA, Al-Rawas AD, Widatallah HM, Elzain ME (2018) Structural and Mössbauer study of nanoparticles CoFe2O4 prepared by sol-gel auto-combustion and subsequent sintering. Hyp Inter 15:239–244

    Google Scholar 

  28. Thomas Nygil, Jithin PV, Sudheesh VD, Sebastian Varkey (2017) Magnetic and dielectric properties of magnesium substituted cobalt ferrite samples synthesized via one step calcination free solution combustion method. Ceram Inter 43:7305–7310

    Article  CAS  Google Scholar 

  29. Poddar P, Gass J, Rebar DJ, Srinath S, Srikanth H, Morrison SA, Carpenter EE (2006) Magnetocaloric effect in ferrite nanoparticles. J Magn Magn Mater 307:227–234

    Article  CAS  Google Scholar 

  30. Pardavi-Horvath M (2000) Microwave applications of soft ferrites. J Magn Magn Mater 215:171–183

    Article  Google Scholar 

  31. Jonscher AK (1977) The Universal Dielectric Response. Nature 267:673–679

    Article  CAS  Google Scholar 

  32. Funke K (1993) Jump relaxation in solid electrolytes. Prog Solid State Chem 22:111–195

    Article  CAS  Google Scholar 

  33. Benali A, Bejar M, Dhahri E, Graca MFP, Costa LC (2015) Electrical conductivity and ac dielectric properties of La0.8Ca0.2-xPbxFeO3 (x = 0.05, 0.10 and 0.15) perovskite compounds. J Alloy Compd 653:506–512

    Article  CAS  Google Scholar 

  34. Mandal SK, Singh S, Dey P, Mandal PR, Nath TK (2016) Frequency and temperature dependence of dielectric and electrical properties of TFe2O4 (T = Ni, Zn, Zn0.5Ni0.5) ferrite nanocrystals. J Alloy Compd 656:887–892

    Article  CAS  Google Scholar 

  35. Omri A, Dhahri E, Costa BFO, Valente MA (2020) Structural, electric and dielectric properties of Ni0. 5Zn0. 5FeCoO4 ferrite prepared by sol-gel. J Magn Magn Mater 499:166243–166251

    Article  CAS  Google Scholar 

  36. Al-Maasham M, Gismelseed AM, Khalaf KAM, Yousif AliA, Al-Rawas AD (2018) Structural and Mössbauer study of nanoparticles CoFe2O4 prepared by sol-gel auto-combustion and subsequent sintering. Hyp Inter 15:239–247

    Google Scholar 

  37. Giuntini JC, Zanchetta JV, Eholie R, Houenou PJ (1981) Temperature dependence of dielectric losses in chalcogenide glasses.nJ.Non-Cryst. Solids 45:57–62

    CAS  Google Scholar 

  38. Ata-Allah SS (2004) XRD and Mossbauer studies of crystallographic and magnetic € transformations in synthesized Zn-substituted CueGaeFe. J Solid State Chem 177:4443––4450

    Article  CAS  Google Scholar 

  39. Taher YB, Oueslati A, Khirouni K, Gargouri M (2015) Conductivity study and correlated barrier hopping (CBH) conduction mechanism in diphosphate compound. J. Clust Sci. 26:1655–1699

    Article  Google Scholar 

  40. Omri A, Dhahri E, Es-Souni M, Valente MA, Costa LC (2012) Electrical conductivity and dielectric analysis of La0.75(Ca,Sr)0.25Mn0.85Ga0.15O3 perovskite compound. J Alloy Compd 536:173–178

    Article  CAS  Google Scholar 

  41. Mohamed CB, Karoui K, Saidi S, Guidara K, Rhaiem AB (2014) Electrical properties, phase transitions and conduction mechanisms of the [(C2H5) NH3] 2CdCl4 compound. Phys B 451:87–95

    Article  CAS  Google Scholar 

  42. Bhat MH, Ganguli M, Bull JR (2003) Conductivity studies in SnO–NaPO3 glasses. Mater Sci 26:407–213

    CAS  Google Scholar 

  43. Schmidt R, Winiecki W, Finlay MD (2007) Impedance Spectroscopy of Epitaxial Multiferroic Thin Films. Phys Rev B 75:245111–245118

    Article  Google Scholar 

  44. Ahmad M, Rafiq MA, Hasan MM (2013) Transport characteristics and colossal dielectric response of cadmium sulfide nanoparticles. J Appl Phys 114:043704–043711

    Article  Google Scholar 

  45. Shukla A, Choudhury RNP, Thakur AK (2009) Thermal, structural and complex impedance analysis of Mn4+ modified BaTiO3 electroceramic. J Phys Chem Solids 70:1401–1410

    Article  CAS  Google Scholar 

  46. Khadhraoui S, Triki A, Hcini S, Oumezzine M (2013) Structural and impedance spectroscopy properties of Pr0.6Sr0.4Mn1−xTixOδ perovskites. J Alloy Compd 574:290–298

    Article  CAS  Google Scholar 

  47. Tlili D, Hamdaoui N, Hcini S, Bouazizi ML, Zemni S (2017) Above room temperature complex impedance analysis of properties of La0.33 Sr0.67 Mn0.33 Ti0.67 O3 /-pervovskit. Phase Trans 90:644–652

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by national funds from FCT – Fundação para a Ciência e a Tecnologia, I.P., within the project UID/04564/2020. Access to TAIL-UC facility funded under QREN-Mais Centro Project No. ICT_2009_02_012_1890 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aref Omri.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omri, A., Dhahri, E., Costa, B.F.O. et al. Study of structural, morphological, Mössbauer and dielectric properties of NiFeCoO4 prepared by a sol gel method. J Sol-Gel Sci Technol 98, 364–375 (2021). https://doi.org/10.1007/s10971-021-05496-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05496-z

Keywords

Navigation