Skip to main content
Log in

Monolithic resorcinol–formaldehyde alcogels and their corresponding nitrogen-doped activated carbons

  • Review Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Here we report the adaptation of formaldehyde crosslinked phenolic resin-based aerogel and xerogel synthesis to ethanol-based solvent systems. Three specific formulations, namely one resorcinol–formaldehyde (RF) and two resorcinol–melamine–formaldehyde (RMF) systems were studied. As-prepared resins were characterized in terms of envelope and skeletal density. Furthermore, resin samples were pyrolyzed and activated in a CO2 gas atmosphere using a single-step protocol. The corresponding carbon materials featured high surface areas, moderate water uptake capacity and thermal conductivities in the 0.1 W.m−1K−1 range, in line with comparable activated carbons. The amount of formaldehyde in the synthesis of the RMF derived carbons proved to be a critical parameter in terms of both structural features and amount of N dopant in the carbonaceous matrix. Furthermore, a high formaldehyde concentration also has a drastic effect on the pore structure of the corresponding RMF carbons, leading primarily to mesopore formation without almost any macropore formation. Perhaps more importantly, the effect of the ammonia curing catalyst concentration on the material microstructure showed the opposite effect as observed in classical, water-based phenolic resin preparations. The ethanol-based synthesis clearly affects the pore structure of the resulting materials but also opens up the possibility to create inorganic/organic hybrid materials by simple combination with classical alkoxide-based silica sol–gel chemistry.

Highlights

  • Transposition of a porous phenolic resin recipe from an aqueous to an ethanolic environment.

  • Improvement of Nitrogen retention rate through pyrolysis and activation.

  • One-step combined heat treatment to create microporosity.

  • Compatibilization with inorganic systems such as alkoxysilanes.

  • Results differ from current literature in some way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kubota M, Ito T, Watanabe F, Matsuda H (2011) Pore structure and water adsorptivity of petroleum coke-derived activated carbon for adsorption heat pump–Influence of hydrogen content of coke. Appl Therm Eng 31(8–9):1495–1498. https://doi.org/10.1016/j.applthermaleng.2011.01.036

    Article  CAS  Google Scholar 

  2. Shimooka S et al. (2007) Improvement of water adsorptivity of activated carbon for adsorption heat pump by hydrophilic treatment. Proc Int Symp EcoTopia Sci

  3. Kawano T, Kubota M, Onyango MS, Watanabe F, Matsuda H (2008) Preparation of activated carbon from petroleum coke by KOH chemical activation for adsorption heat pump. Appl Therm Eng 28(8–9):865–871. https://doi.org/10.1016/j.applthermaleng.2007.07.009

    Article  CAS  Google Scholar 

  4. Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24(9):3221–3227

    Article  CAS  Google Scholar 

  5. Wang H, Bo X, Zhang Y, Guo L (2013) Sulfur-doped ordered mesoporous carbon with high electrocatalytic activity for oxygen reduction. Electrochim Acta 108:404–411. https://doi.org/10.1016/j.electacta.2013.06.133

    Article  CAS  Google Scholar 

  6. Paraknowitsch JP, Thomas A (2013) Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sci 6(10):2839. https://doi.org/10.1039/c3ee41444b

    Article  CAS  Google Scholar 

  7. Lermontov SA et al. (2017) Facile synthesis of fluorinated resorcinol-formaldehyde aerogels. J Fluor Chem 193:1–7. https://doi.org/10.1016/j.jfluchem.2016.11.001

    Article  CAS  Google Scholar 

  8. Ding S, Zheng S, Xie M, Peng L, Guo X, Ding W (2011) One-pot synthesis of boron-doped mesoporous carbon with boric acid as a multifunction reagent. Microporous Mesoporous Mater 142(2–3):609–613. https://doi.org/10.1016/j.micromeso.2011.01.003

    Article  CAS  Google Scholar 

  9. Rao CNR, Gopalakrishnan K, Govindaraj A (2014) Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements. Nano Today 9(3):324–343. https://doi.org/10.1016/j.nantod.2014.04.010

    Article  CAS  Google Scholar 

  10. Liu X et al. (2014) From melamine–resorcinol–formaldehyde to nitrogen-doped carbon xerogels with micro- and meso-pores for lithium batteries. J Mater Chem A 2(35):14429–14438. https://doi.org/10.1039/C4TA02928C

    Article  CAS  Google Scholar 

  11. Principe IA, Fletcher AJ (2018) Parametric study of factors affecting melamine-resorcinol-formaldehyde xerogels properties. Mater Today Chem 7:5–14. https://doi.org/10.1016/j.mtchem.2017.11.002

    Article  CAS  Google Scholar 

  12. Salinas-Torres D, Léonard AF, Stergiopoulos V, Busby Y, Pireaux J-J, Job N (2018) Effect of nitrogen doping on the pore texture of carbon xerogels based on resorcinol-melamine-formaldehyde precursors. Microporous Mesoporous Mater 256:190–198. https://doi.org/10.1016/j.micromeso.2017.08.004

    Article  CAS  Google Scholar 

  13. Huber L et al. (2016) Water sorption behavior of physically and chemically activated monolithic nitrogen doped carbon for adsorption cooling. RSC Adv 6(84):80729–80738. https://doi.org/10.1039/C6RA18660B

    Article  CAS  Google Scholar 

  14. Fu R et al. (2003) The fabrication and characterization of carbon aerogels by gelation and supercritical drying in isopropanol. Adv Funct Mater 13(7):558–562. https://doi.org/10.1002/adfm.200304289

    Article  CAS  Google Scholar 

  15. Kiciński W, Norek M, Jankiewicz BJ (2014) Heterogeneous carbon gels: N-doped carbon xerogels from resorcinol and N-containing heterocyclic aldehydes. Langmuir 30(47):14276–14285. https://doi.org/10.1021/la503207t

    Article  CAS  Google Scholar 

  16. Liu C, Li L, Song H, and Chen X (2007) Facile synthesis of ordered mesoporous carbons from F108/resorcinol–formaldehyde composites obtained in basic media. Chem Commun, 7:757–759. https://doi.org/10.1039/B614199D

  17. Iswar S, Malfait WJ, Balog S, Winnefeld F, Lattuada M, Koebel MM (2017) Effect of aging on silica aerogel properties. Microporous Mesoporous Mater 241:293–302. https://doi.org/10.1016/j.micromeso.2016.11.037

    Article  CAS  Google Scholar 

  18. Sing SW et al. (2008) Reporting Physisorption Data for Gas/Solid Systems. In: Handbook of Heterogeneous Catalysis, Weinheim (Eds), Wiley-VCGVerlag GmbH & Co. KGaA

  19. Ahmadpour A, Do DD (1996) The preparation of active carbons from coal by chemical and physical activation. Carbon 34(4):471–479

    Article  CAS  Google Scholar 

  20. Martinez-Escandell M, de Castro MM, Molina-Sabio M, Rodriguez-Reinoso F (2013) KOH activation of carbon materials obtained from the pyrolysis of ethylene tar at different temperatures. Fuel Process Technol 106:402–407. https://doi.org/10.1016/j.fuproc.2012.09.005

    Article  CAS  Google Scholar 

  21. Mohamed AR, Mohammadi M, Darzi GN (2010) Preparation of carbon molecular sieve from lignocellulosic biomass: a review. Renew Sustain Energy Rev 14(6):1591–1599. https://doi.org/10.1016/j.rser.2010.01.024

    Article  CAS  Google Scholar 

  22. Rodriguez-Reinoso F, Molina-Sabio M (1992) Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview. Carbon 30(7):1111–1118

    Article  CAS  Google Scholar 

  23. Okada K, Yamamoto N, Kameshima Y, Yasumori A (2003) Porous properties of activated carbons from waste newspaper prepared by chemical and physical activation. J Colloid Interface Sci 262(1):179–193. https://doi.org/10.1016/S0021-9797(03)00107-3

    Article  CAS  Google Scholar 

  24. Guo S et al. (2009) Effects of CO2 activation on porous structures of coconut shell-based activated carbons. Appl Surf Sci 255(20):8443–8449. https://doi.org/10.1016/j.apsusc.2009.05.150

    Article  CAS  Google Scholar 

  25. Betancur M, Martínez JD, Murillo R (2009) Production of activated carbon by waste tire thermochemical degradation with CO2. J Hazard Mater 168(2–3):882–887. https://doi.org/10.1016/j.jhazmat.2009.02.167

    Article  CAS  Google Scholar 

  26. This H (2007) Formal descriptions for formulation. Int J Pharmaceutics 344(1–2):4–8. https://doi.org/10.1016/j.ijpharm.2007.07.046

    Article  CAS  Google Scholar 

  27. This H (2012) Solutions are solutions, and gels are almost solutions. Pure Appl Chem 85(1):257–276. https://doi.org/10.1351/PAC-CON-12-01-01

    Article  CAS  Google Scholar 

  28. This H (2017) Statgels and dynagels. Notes Académiques de l’Académie d’Agriculture de France (N3AF). vol. 1, p1–12. hal-01637757

  29. ISO-15901-3 (2007) Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption. Analysis of micropores by gas adsorption. Part 3. https://www.iso.org/obp/ui/#iso:std:40364:en

  30. Olivier JP (1995) Modeling physical adsorption on porous and nonporous solids using density functional theory. J Porous Mater 2(1):9–17. https://doi.org/10.1007/BF00486565

    Article  CAS  Google Scholar 

  31. Olivier JP (1996) The determination of surface energetic heterogeneity using model isotherms calculated by density functional theory. In: MD LeVan (ed) Fundamentals of Adsorption, 356 Springer, US Boston, MA, p 699–707

  32. Tarazona P (1985) Free-energy density functional for hard spheres. Phys Rev A 31(4):2672

    Article  CAS  Google Scholar 

  33. Tarazona P, Marconi UMB, Evans R (1987) Phase equilibria of fluid interfaces and confined fluids: non-local versus local density functionals. Mol Phys 60(3):573–595. https://doi.org/10.1080/00268978700100381

    Article  CAS  Google Scholar 

  34. Stahl T, Brunner S, Zimmermann M, Ghazi Wakili K (2012) Thermo-hygric properties of a newly developed aerogel based insulation rendering for both exterior and interior applications Energy Build 44:114–117. https://doi.org/10.1016/j.enbuild.2011.09.041

    Article  Google Scholar 

  35. Mitsunaga T, Conner AH, Hill CG (2002) Predicting the hydroxymethylation rate of phenols with formaldehyde by molecular orbital calculation. J Wood Sci 48(2):153–158. https://doi.org/10.1007/BF00767293

    Article  CAS  Google Scholar 

  36. Ren B, Li C, Yuan X, Wang F (2003) Determination and correlation of melamine solubility. J Chem Ind Eng-China 54(7):1001–1001

    CAS  Google Scholar 

  37. Okano M, Ogata Y (1952) Kinetics of the condensation of melamine with formaldehyde. J Am Chem Soc 74(22):5728–5731

    Article  Google Scholar 

  38. XU P, HUANG L, LI R (2008) Solubility study of melamine in the solution with different pH. Anhui Chem Ind 48(6):23–24

    Google Scholar 

  39. Głowacz-Czerwonka D (2013) Prospects of using melamine solutions in reactive solvents in polymer technology. Chemik 67:289–300. https://www.semanticscholar.org/paper/Prospects-of-using-melamine-solutions-in-reactive-G%C5%82owacz-Czerwonka/0dcf57c07a98bd08559574551aad78eef17c6e12

  40. Koeda K (1954) Studies on the condensation products of melamine with formaldehyde. I. Analysis of the products composition by paper-chromatographic method. Nippon kagaku zassi 75(5):571–574. https://doi.org/10.1246/nikkashi1948.75.571

    Article  Google Scholar 

  41. Bann B, Miller SA (1958) Melamine and derivatives of melamine. Chem Rev 58(1):131–172. https://doi.org/10.1021/cr50019a004

    Article  CAS  Google Scholar 

  42. Huber L et al. (2016) Monolithic nitrogen-doped carbon as a water sorbent for high-performance adsorption cooling. RSC Adv 6(30):25267–25278. https://doi.org/10.1039/C6RA00548A

    Article  CAS  Google Scholar 

  43. Huber L et al. (2019) The effect of activation time on water sorption behavior of nitrogen-doped, physically activated, monolithic carbon for adsorption cooling. Microporous Mesoporous Mater 276:239–250. https://doi.org/10.1016/j.micromeso.2018.09.025

    Article  CAS  Google Scholar 

  44. Scherrer P (1912) Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. In: Kolloidchemie Ein Lehrbuch, Springer, Berlin Heidelberg, p 387–409

  45. Ayral A, Phalippou J, Woignier T (1992) Skeletal density of silica aerogels determined by helium pycnometry. J Mater Sci 27(5):1166–1170

    Article  CAS  Google Scholar 

  46. Llewellyn PL, Rodriquez-Reinoso F, Rouqerol J, Seaton N (2007) Is the BET equation applicable to microporous adsorbents?. Stud Surf Sci Catal 160:49

    Article  Google Scholar 

  47. Schneider P, Hudec P, Solcova O (2008) Pore-volume and surface area in microporous–mesoporous solids. Microporous Mesoporous Mater 115(3):491–496. https://doi.org/10.1016/j.micromeso.2008.02.024

    Article  CAS  Google Scholar 

  48. Rey-Raap N, Angel Menéndez J, Arenillas A (2014) RF xerogels with tailored porosity over the entire nanoscale. Microporous Mesoporous Mater 195:266–275. https://doi.org/10.1016/j.micromeso.2014.04.048

    Article  CAS  Google Scholar 

  49. Rey-Raap N, Arenillas A, Menéndez JA (2016) A visual validation of the combined effect of pH and dilution on the porosity of carbon xerogels. Microporous Mesoporous Mater 223:89–93. https://doi.org/10.1016/j.micromeso.2015.10.044

    Article  CAS  Google Scholar 

  50. Lin C, Ritter JA (1997) Effect of synthesis pH on the structure of carbon xerogels. Carbon 35(9):1271–1278. https://doi.org/10.1016/S0008-6223(97)00069-9

    Article  CAS  Google Scholar 

  51. Taylor SJ, Haw MD, Sefcik J, Fletcher AJ (2014) Gelation mechanism of resorcinol-formaldehyde gels investigated by dynamic light scattering. Langmuir 30(34):10231–10240. https://doi.org/10.1021/la502394u

    Article  CAS  Google Scholar 

  52. Jelle BP (2011) Traditional, state-of-the-art and future thermal building insulation materials and solutions – properties, requirements and possibilities. Energy Build 43(10):2549–2563. https://doi.org/10.1016/j.enbuild.2011.05.015

    Article  Google Scholar 

  53. Kumar KV, Preuss K, Guo ZX, Titirici MM (2016) Understanding the hydrophilicity and water adsorption behavior of nanoporous nitrogen-doped carbons. J Phys Chem C 120(32):18167–18179. https://doi.org/10.1021/acs.jpcc.6b06555

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Laboratory for Organic Chemistry at ETH Zürich for the elemental analysis, Dr Arndt Remhof at Empa for allowing us to use his X-ray diffractometer, and the Cellulose & Wood Materials laboratory at Empa for the measuring time on their DVS apparatus.

Funding

MMK gratefully acknowledges financial support from the Swiss National Science Foundation (Grant number IZLRZ2_164058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Civioc.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Civioc, R., Lattuada, M., Koebel, M.M. et al. Monolithic resorcinol–formaldehyde alcogels and their corresponding nitrogen-doped activated carbons. J Sol-Gel Sci Technol 95, 719–732 (2020). https://doi.org/10.1007/s10971-020-05288-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05288-x

Keywords

Navigation