Skip to main content
Log in

Ultrasonic-assisted sol–gel synthesis of TiO2 nanostructures: Influence of synthesis parameters on morphology, crystallinity, and photocatalytic performance

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The influence of synthesis parameters using the ultrasonic-assisted sol–gel method on the properties of TiO2 nanostructures was studied. Different synthesis conditions such as long stirring time, type of acid used as the catalyst (weak or strong acid), and calcination temperature were explored and their influences on the morphology, size, crystallinity of nanostructures, and photocatalytic performance were evaluated. TiO2 nanostructures were characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction, and ultraviolet–visible diffuse reflectance spectroscopy. Moreover, degradation photocatalytic tests were performed using methylene blue as the polluting model. Changes in the morphologies and sizes of nanostructures were observed by modification of the stirring time using this sonication process. Moreover, the use of a weak acid, such as acetic acid, produced nanostructures with higher anatase proportion, larger crystallite size, and larger nanoparticle size compared with the use of a strong acid such as nitric acid. In addition, changes in crystalline phases were observed with an increase in the calcination temperature. Finally, the photocatalytic performance was influenced mainly by the changes in the crystalline phases, which were dependent on the type of acid catalyst and the calcination temperature.

Highlights

  • Synthesis parameters of TiO2 nanostructures by the sol–gel method are investigated.

  • Ultrasonic stirring time, acid type as a catalyst and calcination temperature are evaluated.

  • Morphology, size, crystallinity, and photocatalytic performance of nanostructures are studied.

  • Ultrasonic stirring time affect the morphology and the size of nanostructure.

  • Acid type and calcination temperature influence on crystalline phases and nanoparticle size.

  • Photocatalytic performance is mainly influenced by the change in the crystalline phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mahshid S, Askari M, Ghamsari M (2007) Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. J Mater Process Technol 189:296–300

    CAS  Google Scholar 

  2. Lopez-Muñoz M, Revilla A, Alcalde G (2015) Brookite TiO2-based materials: synthesis and photocatalytic performance in oxidation of methyl orange and As(III) in aqueous suspensions. Catal Today 240:138–145

    Google Scholar 

  3. Afuyoni M, Nashed G, Nasser I (2011) TiO2 doped with SnO2 and studing its structurail and electrical properties. Energy Procedia 6:11–20

    CAS  Google Scholar 

  4. García A, Quintero Y, Vicencio N, Rodríguez B, Ozturk D, Mosquera E, Corrales TP, Volkmann UG (2016) Influence of TiO2 nanostructures on anti-adhesion and photoinduced bactericidal properties of thin film composite membranes. RSC Adv 6:82941–82948

    Google Scholar 

  5. Liu J, Li Y, Arumugam S, Tudor J, Beeby S (2018) Investigation of low temperature processed titanium dioxide (TiO2) films for printed dye sensitized solar cells (DSSCs) for large area flexible applications. Mater Today 5:13846–13854

    CAS  Google Scholar 

  6. Omprakash S, Kumar S, Holla R (2018) Titanium dioxide and Zinc oxide as a dielectric material for application in TFT’s. Mater Today 5:10833–10838

    CAS  Google Scholar 

  7. H. Memon, S. Yasin, N. Khoso, M. Hussain (2015) Indoor decontaminating textiles by photo catalytic oxidation—a review. J Nanotech 2015:1–9

  8. Memon H, Kumari N (2016) Study of multifunctional nanocoated cold plasma treated polyester cotton blended curtains. Surf Rev Lett 5:1–11

    Google Scholar 

  9. Chen W, Yu J, Hu W, Chen Z, Memon H, Chen G (2016) Titanate nanowires/NiO nanoflakes core/shell heterostructured nanonanocomposite catalyst for the methylene blue photodegradation. RSC Adv 72:67827–67832

    Google Scholar 

  10. Saini A, Sharma J, Sharma R, Chaudhary A, Sharma D, Dhayal V (2019) Zinc oxide derived from zinc(II)/acetoxime system: formation pathway and solar-driven photocatalytic and antimicrobial applications. J Sol-Gel Sci Technol 91:644–653

    CAS  Google Scholar 

  11. Memon H, Kumari N, Jatoi A, Khoso N (2016) Study of the indoor decontamination using nanocoated woven polyester fabric. Int Nano Lett 7:1–7

    Google Scholar 

  12. Baradaran M, Ghodsi F (2019) Highly efficient visible photocatalytic degradation of MB organic dye by heteromorphic ZnO/AZO/ZnO nanocatalysts: effect of AZO thickness. J Sol–Gel Sci Technol 92:25–39

    CAS  Google Scholar 

  13. Dubey R (2018) Temperature-dependent phase transformation of TiO2 nanoparticles synthesized by sol-gel method. Mater Lett 215:312–317

    CAS  Google Scholar 

  14. Imran M, Riaz S, Naseem S (2015) Synthesis and characterization of titania nanoparticles by sol-gel technique. Mater Today 2:5455–5461

    Google Scholar 

  15. Kanna M, Wongnawa S (2008) Mixed amorphous and nanocrystalline TiO2 powders prepared by sol–gel method: characterization and photocatalytic study. Mater Chem Phys 110:166–175

    CAS  Google Scholar 

  16. Jongprateep O, Puranasamriddhi R (2018) Effects of reagents on the formation of nanoparticulatetitaniumdioxide synthesized by sol-gel technique. Mater Today 5:10925–10931

    CAS  Google Scholar 

  17. Ma Z, Jiang Y, Xiao H, Jiang B, Zhang H, Peng M, Dong G, Yu X, Yang J (2018) Sol-gel preparation of Ag-silica nanocomposite with high electrical conductivity. Appl Surf Sci 436:732–738

    CAS  Google Scholar 

  18. Kong F, Ning W, Wang A, Liu Y, Tian M (2018) Convenient solvothermal synthesis of nanoscale 0-2D Bi without surfactants and templates. J Alloy Compd 737:484–489

    CAS  Google Scholar 

  19. Bincy J, Silvena G, Rajesh A (2018) Influence of reaction time on the structural, optical and electrical performance of copper antimony sulfide nanoparticles using solvothermal method. Phys B 537:243–250

    Google Scholar 

  20. Meng L, Wang B, Ma M, Lin K (2016) The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials. Mater Today Chem 1:63–83

    Google Scholar 

  21. Peng T, Ray S, Veeravalli S, Lalman J, Arefi F (2018) The role of hydrothermal conditions in determining 1D TiO2 nanomaterials bandgap energies and crystal phases. Mater Res Bull 105:104–113

    CAS  Google Scholar 

  22. Goyal A, Soni P (2018) Functionally graded nanocrystalline silicon powders by mechanical alloying. Mater Lett 214:111–114

    CAS  Google Scholar 

  23. Rabiee M, Mirzadeh H, Ataie A (2017) Processing of Cu-Fe and Cu-Fe-SiC nanocomposites by mechanical alloying. Adv Powder Technol 28:1882–1887

    CAS  Google Scholar 

  24. Tan D, Zhou S, Qiu J, Khusro N (2013) Preparation of functional nanomaterials with femtosecond laser ablation in solution. J Photochemistry Photobiol C 17:50–68

    CAS  Google Scholar 

  25. Xiao J, Liu P, Wang C, Yang G (2017) External field-assisted laser ablation in liquid: An efficient strategy for nanocrystal synthesis and nanostructure assembly. Prog Mater Sci 87:140–220

    CAS  Google Scholar 

  26. Pelaez M, Nolan N, Pillai S, Seery M, Falaras P, Kontos A, Dunlop P, Hamilton J, Byrne J, O’Shea K, Entezari M, Dionysiou D (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B 125:331–349

    CAS  Google Scholar 

  27. Mahy J, Deschamps F, Collard V, Jérôme C, Bartlett J, Lambert S, Heinrichs B (2018) Acid acting as redispersing agent to form stable colloids from photoactive crystalline aqueous sol–gel TiO2 powder. J Sol–Gel Sci Technol 87:568–583

    CAS  Google Scholar 

  28. Tian Q, Wei W, Dai J, Sun Q, Zhuang J, Zheng Y, Liu P, Fan M, Chen L (2019) Porous core-shell TixSn1-xO2 solid solutions with broad-light response: one-pot synthesis and ultrahigh photooxidation performance. Appl Catal B 244:45–55

    CAS  Google Scholar 

  29. Sayilkan F, Asiltürk M, Sayilkan H, Önal Y, Akarsu M, Apac E (2005) Characterization of TiO2 synthesized in alcohol by a sol-gel process: the effects of annealing temperature and acid catalyst. Turk J Chem 29:697–706

    CAS  Google Scholar 

  30. Andrade M, Díaz L, Cortés D, Cabello C, Ávila C, Bartolo P, Gamero P (2018) Microwave assisted sol–gel synthesis of titanium dioxide using hydrochloric and acetic acid as catalyst. Boletín de la sociedad Española de céramica y vidrio. https://doi.org/10.1016/j.bsecv.2018.10.005

  31. Arunmetha S, Manivasakan P, Karthik A, Babu N, Srither S, Rajendran V (2013) Effect of processing methods on physicochemical properties of titania nanoparticles produced from natural rutile sand. Adv Powder Technol 24:972–979

    CAS  Google Scholar 

  32. Xia X, Luo Y, Wang Z, Liang Y, Fan J, Jia Z, Chen Z (2007) Ultrasonic synthesis and photocatalytic activity investigation of TiO2 nanoarrays. Mater Lett 61:2571–2574

    CAS  Google Scholar 

  33. Neppolian B, Wang Q, Jung H, Choi H (2008) Ultrasonic-assisted sol-gel method of preparation of TiO2 nano-particles: Characterization, properties and 4-chlorophenol removal application. Ultrason Sonochem 15:649–658

    CAS  Google Scholar 

  34. Li B, Wang X, Yan M, Li L (2002) Preparation and characterization of nano-TiO2 powder. Mater Chem Phys 78:184–188

    CAS  Google Scholar 

  35. Jenkins R, Snyder R (1996) Introduction to X-ray powder diffractometry. vol 138. Wiley, New York, NY

  36. Kubelka P, Munk F (1931) An article on optics of paint layers. Tech Phys 12:593

    Google Scholar 

  37. Kenneth P, Suslick S, Gareth J (1999) Applicatios of ultrasound to materials chemistry. Annu Rev Mater Sci 29:295–326

    Google Scholar 

  38. ullah H, Khan I, Yamani Z, Qurashi A (2017) Sonochemical-driven ultrafast facile synthesis of SnO2 nanoparticles: Growth mechanism structural electrical and hydrogen gas sensing properties. Ultrason Sonochem 34:484–490

    CAS  Google Scholar 

  39. Mosquera E, Carvajal N, Morel M, Marín C (2017) Fabrication of ZnSe nanoparticles: structural, optical and Raman Studies. J Lumin 192:814–817

    CAS  Google Scholar 

  40. Mosquera E, Carvajal N (2014) Low temperature synthesis and blue photoluminescence of ZnS submicronparticles. Mater Lett 129:8–11

    CAS  Google Scholar 

  41. Alzamani M, Shokuhfar A, Eghdam E, Mastali S (2013) Influence of catalyst on structural and morphological properties of TiO2 nanostructured films prepared by sol–gel on glass. Prog Nat Sci 1:77–84

    Google Scholar 

  42. Naseem S, Riaz S (2015) Controlled nanostructuring of TiO2 nanoparticles: a sol-gel approach. J Sol–Gel Sci Technol 74:299–309

    Google Scholar 

  43. Mathew S, Kumar A, Benoy T, Rakesh P, Hari M, Libish T, Radhakrishnan P, Nampoori V, Vallabhan C (2012) UV-visible photoluminiscence of TiO2 nanoparticles prepared by hydrothermal method. J Fluoresc 22:1563–1569

    CAS  Google Scholar 

  44. Vinogradov A, Vinogradov V (2014) Effect of acidic peptization on formation of highly photoactive TiO 2 films prepared without heat treatment. J Am Ceram Soc 97:290–294

    CAS  Google Scholar 

  45. Malengreaux C, Pirard S, Léonard G, Mahy J, Herlitschke M, Klobes B, Hermann R, Heinrichs B, Bartlett J (2017) Study of the photocatalytic activity of Fe3+, Cr3+, La3+ and Eu3+ single-doped and co-doped TiO2 catalysts produced by aqueous sol-gel processing. J Alloy Compd 691:726–738

    CAS  Google Scholar 

  46. Reyes-Coronado D, Rodriguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, de Coss R, Oskam G (2008) phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19:145605

    CAS  Google Scholar 

  47. Matos J, Quintana K, García A (2012) Influence of H-type and L-type activated carbon in the photodegradation of methylene blue and phenol under UV and visible light irradiated TiO2. Mod Res Catal 1:1–9

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Fund for the Promotion of Scientific and Technological Development (FONDEF) of the Government of Chile (Project no. ID15I10086) and also acknowledge the Universidad de Santiago de Chile (USACH), especially Professor Diego Venegas-Yazigi for the UV–vis/DRS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. García.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quintero, Y., Mosquera, E., Diosa, J. et al. Ultrasonic-assisted sol–gel synthesis of TiO2 nanostructures: Influence of synthesis parameters on morphology, crystallinity, and photocatalytic performance. J Sol-Gel Sci Technol 94, 477–485 (2020). https://doi.org/10.1007/s10971-020-05263-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05263-6

Keywords

Navigation