Skip to main content

Advertisement

Log in

Novel three-dimensional halloysite nanotubes/silica composite aerogels with enhanced mechanical strength and low thermal conductivity prepared at ambient pressure

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Novel three-dimensional halloysite nanotubes (HNTs)/silica composite aerogels were fabricated to strengthen the nanostructure and overcome inherent fragility of silica aerogel by a sol–gel method using tetraethyl orthosilicate (TEOS) and 1,4-Phenylene diisocyanate (PPDI)-modified HNTs (p-HNTs) as the main materials, followed by an environmentally friendly ambient pressure drying (APD). The modification and dispersion of HNTs were investigated by using FTIR, SEM, TEM. Meanwhile, the morphology, mechanical properties, and thermal conductivity of aerogels were also studied. The results showed that the p-HNTs were uniformly dispersed in the silica aerogel. This resulted in composites with unique interpenetrating network microstructure that could give an enhanced mechanical properties to aerogels. The compressive strength was found to vary from 400 kPa to 1.45 MPa and thermal conductivity from 0.025 to 0.038 W/m K. In addition, randomly oriented p-HNTs can obviously reduce both the linear shrinkage and density of composite aerogels. The composites with outstanding properties prepared by APD are potential for building applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kistler S (1931) Coherent expanded aerogels and jellies. Nature 127:741

    Article  Google Scholar 

  2. Yun S, Luo H, Gao Y (2015) Low-density, hydrophobic, highly flexible ambient-pressure-dried monolithic bridged silsesquioxane aerogels. J Mater Chem A 3:3390–3398

    Article  Google Scholar 

  3. Guo H, Meador MA, McCorkle L, Quade DJ, Guo J, Hamilton B, Cakmak M, Sprowl G (2011) Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane. ACS Appl Mater Interfaces 3(2):546–552

    Article  Google Scholar 

  4. Gibiat V, Lefeuvre O, Woignier T, Pelous J, Phalippou J (1995) Acoustic properties and potential applications of silica aerogels. J Non-Cryst Solids 186:244–255

    Article  Google Scholar 

  5. Ihara T, Gao T, Grynning S, Jelle BP, Gustavsen A (2015) Aerogel granulate glazing facades and their application potential from an energy saving perspective. Appl Energy 142:179–191

    Article  Google Scholar 

  6. Gao T, Jelle BP, Sandberg LIC, Gustavsen A (2013) Monodisperse hollow silica nanospheres for nano insulation materials: synthesis, characterization, and life cycle assessment. ACS Appl Mater Interfaces 5(3):761–767

    Article  Google Scholar 

  7. ElKhatat AM, Al-Muhtaseb SA (2011) Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv Mater 23(26):2887–2903

    Article  Google Scholar 

  8. Hu X, Zheng S, Zhu L, Tanyi AR, Lan H et al (2013) Adsorption of 2-phenylethyl alcohol on silica aerogel from saturated solution in supercritical CO2. J Supercrit Fluids 79:41–45

    Article  Google Scholar 

  9. Sabri F, Leventis N, Hoskins J, Schuerger AC, Sinden-Redding M, Britt D, Duran RA (2011) Spectroscopic evaluation of polyurea crosslinked aerogels, as a substitute for RTV-based chromatic calibration targets for spacecraft. Adv Space Res 47(3):419–427

    Article  Google Scholar 

  10. Sabri F, Marchetta J, Smith KM (2013) Thermal conductivity studies of a polyurea cross-linked silica aerogel-RTV 655 compound for cryogenic propellant tank applications in space. Acta Astronaut 91:173–179

    Article  Google Scholar 

  11. Leventis N, Sotiriou-Leventis C, Zhang G, Rawashdeh A-MM (2002) Nanoengineering strong silica aerogels. Nano Lett 2(9):957–960

    Article  Google Scholar 

  12. Meador MAB, Capadona LA, McCorkle L, Papadopoulos DS, Leventis N (2007) Structure-property relationships in porous 3D nanostructures as a function of preparation conditions: isocyanate cross-linked silica aerogels. Chem Mater 19(9):2247–2260

    Article  Google Scholar 

  13. Nguyen BN, Meador MAB, Medoro A, Arendt V, Randall J, McCorkle L, Shonkwiler B (2010) Elastic behavior of methyltrimethoxysilane based aerogels reinforced with tri-isocyanate. ACS Appl Mater Interfaces 2(5):1430–1443

    Article  Google Scholar 

  14. Wang X, Zhang H, Jana SC (2013) Sulfonated syndiotactic polystyrene aerogels: properties and applications. J Mater Chem A 1(44):13989

    Article  Google Scholar 

  15. Zhang Y, Li H, Xu Z, Bu W, Liu C, Dong J, Hu Y (2014) Synthesis of low dispersity star-like polyethylene: a combination of click chemistry and a sol–gel process. Polym Chem 5(13):3963

    Article  Google Scholar 

  16. Duan Y, Jana SC, Lama B, Espe MP (2013) Reinforcement of silica aerogels using silane-end-capped polyurethanes. Langmuir 29(20):6156–6165

    Article  Google Scholar 

  17. Talebi Mazraeh-shahi Z, Mousavi Shoushtari A, Bahramian AR, Abdouss M (2015) Synthesis, pore structure and properties of polyurethane/silica hybrid aerogels dried at ambient pressure. J Ind Eng Chem 21:797–804

    Article  Google Scholar 

  18. Guo H, Meador MA, McCorkle L, Quade DJ, Guo J, Hamilton B, Cakmak M, Sprowl G (2011) Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane. ACS Appl Mater Interfaces 3(2):546–552

    Article  Google Scholar 

  19. Yan P, Zhou B, Du A (2014) Synthesis of polyimide cross-linked silica aerogels with good acoustic performance. RSC Adv 4(102):58252–58259

    Article  Google Scholar 

  20. Zhang L, Wu J, Zhang X, Gong G, Liu J, Guo L (2015) Multifunctional, marvelous polyimide aerogels as highly efficient and recyclable sorbents. RSC Adv 5(17):12592–12596

    Article  Google Scholar 

  21. Katti A, Shimpi N, Roy S, Lu H, Fabrizio EF, Dass A, Capadona LA, Leventis N (2006) Chemical, physical, and mechanical characterization of isocyanate cross-linked amine-modified silica aerogels. Chem Mater 18(2):285–296

    Article  Google Scholar 

  22. Leventis N (2007) Three-dimensional core-shell superstructures: mechanically strong aerogels. Acc Chem Res 40(9):874–884

    Article  Google Scholar 

  23. Nguyen BN, Meador MAB, Tousley ME, Shonkwiler B, McCorkle L, Scheiman DA, Palczer A (2009) Tailoring elastic properties of silica aerogels cross-linked with polystyrene. ACS Appl Mater Interfaces 1(3):621–630

    Article  Google Scholar 

  24. Yi X, Zhang L, Wang F, Shen X, Cui S, Zhang J, Wang X (2014) Mechanically reinforced composite aerogel blocks by self-growing nanofibers. RSC Adv 4(89):48601–48605

    Article  Google Scholar 

  25. Lu Z, Yuan Z, Liu Q, Hu Z, Xie F, Zhu M (2015) Multi-scale simulation of the tensile properties of fiber-reinforced silica aerogel composites. Mater Sci Eng, A 625:278–287

    Article  Google Scholar 

  26. Parmenter KE, Milstein F (1998) Mechanical properties of silica aerogels. J Non-Cryst Solids 223(3):179–189

    Article  Google Scholar 

  27. Yang X, Wei J, Shi D, Sun Y, Lv S, Feng J, Jiang Y (2014) Comparative investigation of creep behavior of ceramic fiber-reinforced alumina and silica aerogel. Mater Sci Eng A 609:125–130

    Article  Google Scholar 

  28. Yuan B, Ding S, Wang D, Wang G, Li H (2012) Heat insulation properties of silica aerogel/glass fiber composites fabricated by press forming. Mater Lett 75:204–206

    Article  Google Scholar 

  29. Ślosarczyk A, Wojciech S, Piotr Z, Paulina J (2015) Synthesis and characterization of carbon fiber/silica aerogel nanocomposites. J Non-Cryst Solids 416:1–3

    Article  Google Scholar 

  30. Maleki H, Durães L, Portugal A (2014) An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J Non-cryst Solids 385:55–74

    Article  Google Scholar 

  31. Liu Y, Jiang X, Li B, Zhang X, Liu T, Yan X, Ding J, Cai Q, Zhang J (2014) Halloysite nanotubes@reduced graphene oxide composite for removal of dyes from water and as supercapacitors. J Mater Chem A 2(12):4264

    Article  Google Scholar 

  32. Wang Q, Wang Y, Zhao Y, Zhang B, Niu Y, Xiang X, Chen R (2015) Fabricating roughened surfaces on halloysite nanotubes via alkali etching for deposition of high-efficiency Pt nanocatalysts. CrystEngComm 17(16):3110–3116

    Article  Google Scholar 

  33. Zhou C, Sun T, Gao Q, Alshameri A, Zhu P, Wang H, Qiu X, Ma Y, Yan C (2014) Synthesis and characterization of ordered mesoporous aluminosilicate molecular sieve from natural halloysite. J Taiwan Inst Chem E 45(3):1073–1079

    Article  Google Scholar 

  34. Vahedi V, Pasbakhsh P, Chai S-P (2015) Toward high performance epoxy/halloysite nanocomposites: new insights based on rheological, curing, and impact properties. Mater Des 68:42–53

    Article  Google Scholar 

  35. Zhang Y, Pan J, Yan Y, Shi W, Yu L (2014) Synthesis and evaluation of stable polymeric solid acid based on halloysite nanotubes for conversion of one-pot cellulose to 5-hydroxymethylfurfural. RSC Adv 4(45):23797

    Article  Google Scholar 

  36. Zeng S, Reyes C, Liu J, Rodgers PA, Wentworth SH, Sun L (2014) Facile hydroxylation of halloysite nanotubes for epoxy nanocomposite applications. Polymer 55(25):6519–6528

    Article  Google Scholar 

  37. Liu M, Jia Z, Jia D, Zhou C (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39(8):1498–1525

    Article  Google Scholar 

  38. Ding X, Wang H, Chen W, Liu J, Zhang Y (2014) Preparation and antibacterial activity of copper nanoparticle/halloysite nanotube nanocomposites via reverse atom transfer radical polymerization. RSC Adv 4(79):41993–41996

    Article  Google Scholar 

  39. Luo Z, Wang A, Wang C, Qin W, Zhao N, Song H, Gao J (2014) Liquid crystalline phase behavior and fiber spinning of cellulose/ionic liquid/halloysite nanotubes dispersions. J Mater Chem A 2(20):7327–7336

    Article  Google Scholar 

  40. Zhang L, Wang T, Liu P (2008) Polyaniline-coated halloysite nanotubes via in situ chemical polymerization. Appl Surf Sci 255(5):2091–2097

    Article  Google Scholar 

  41. Liu M, Jia Z, Liu F, Jia D, Guo B (2010) Tailoring the wettability of polypropylene surfaces with halloysite nanotubes. J Colloid Interface Sci 350(1):186–193

    Article  Google Scholar 

  42. Barrientos-Ramírez S, Oca-Ramírez GMd, Ramos-Fernández EV, Sepúlveda-Escribano A, Pastor-Blas MM, González-Montiel A (2011) Surface modification of natural halloysite clay nanotubes with aminosilanes. Application as catalyst supports in the atom transfer radical polymerization of methyl methacrylate. Appl Catal A 406(1):22–33

    Article  Google Scholar 

  43. Rooj S, Das A, Heinrich G (2011) Tube-like natural halloysite/fluoroelastomer nanocomposites with simultaneous enhanced mechanical, dynamic mechanical and thermal properties. Eur Polym J 47(9):1746–1755

    Article  Google Scholar 

  44. Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog Polym Sci 38(8):1232–1261

    Article  Google Scholar 

  45. Yun S, Luo H, Gao Y (2014) Ambient-pressure drying synthesis of large resorcinol-formaldehyde-reinforced silica aerogels with enhanced mechanical strength and superhydrophobicity. J Mater Chem A 2(35):14542–14549

    Article  Google Scholar 

  46. Albdiry MT, Yousif BF (2014) Role of silanized halloysite nanotubes on structural, mechanical properties and fracture toughness of thermoset nanocomposites. Mater Des 57:279–288

    Article  Google Scholar 

  47. Liu M, Zhang Y, Zhou C (2013) Nanocomposites of halloysite and polylactide. Appl Clay Sci 75:52–59

    Article  Google Scholar 

  48. Wang H, Shi L, Yan T, Zhang J, Zhong Q, Zhang D (2014) Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization. J Mater Chem A 2(13):4739–4750

    Article  Google Scholar 

  49. Xu X, Liu Y, Lu T, Sun Z, Chua DHC, Pan L (2015) Rational design and fabrication of graphene/carbon nanotubes hybrid sponge for high-performance capacitive deionization. J Mater Chem A 3:13418–13425

    Article  Google Scholar 

  50. Yusof Y, Johan MR (2014) Concentration-dependent properties of amorphous carbon nanotube/silica composites via the sol–gel technique. CrystEngComm 16(36):8570–8575

    Article  Google Scholar 

  51. Guo K, Song H, Chen X, Du X, Zhong L (2014) Graphene oxide as an anti-shrinkage additive for resorcinol-formaldehyde composite aerogels. Phys Chem Chem Phys 16(23):11603–11608

    Article  Google Scholar 

Download references

Acknowledgments

This project was financially Supported by the National Natural Science Foundation of China (No.51472175) and the Tianjin Research Program of Application Foundation and Advanced Technology (No.15JCZDJC37200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongli Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Chu, P., Li, H. et al. Novel three-dimensional halloysite nanotubes/silica composite aerogels with enhanced mechanical strength and low thermal conductivity prepared at ambient pressure. J Sol-Gel Sci Technol 80, 651–659 (2016). https://doi.org/10.1007/s10971-016-4154-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4154-5

Keywords

Navigation