Skip to main content
Log in

A method to improve crystal quality of CZTSSe absorber layer

  • Original Paper: Sol-gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this work, a fabrication process of high crystallinity CZTSSe absorber layer is presented. The CZTS structure is firstly prepared by spin-coating method then the film is converted into CZTSSe via selenization process using graphite box and tube furnace. Se powder has been used as source of selenizing vapors. By keeping the annealing temperature as constant and changing the mass of Se powder, the structural, optical, electrical properties, and composition of CZTSSe thin films are investigated. With substitution of S by Se, the smoothly, densely packed morphology and large grain size have been achieved. At optimal Se mass, the p-type CZTSSe film has bandgap energy, hole concentration, and resistivity of 1.27 eV, 1.7 × 1019cm−3 and 0.57 Ω.cm respectively which are suitable for photovoltaic application.

To prepare the high crystalline structure CZTSSe absorber layers, we adopted the two-step process, CZTS thin films were prepared by a non-toxic, simple and economical spin-coating technique and then the films were converted into CZTSSe films by selenization in a tubular quartz furnace. In selenization step, CZTS thin films and selenium powder were loaded into a graphite box and inserted into the furnace. The influence of the Se powder content in selenization process on the crystal growth, optical, electrical properties, and surface morphology of CZTSSe thin films is investigated.

Highlights

  • High crystallinity CZTSSe absorber layer are successfully prepared by spin-coating method on glass substrates and selenization process using Se powder.

  • The influence of the Se powder content in selenization process on the crystal growth, optical, electrical properties, and surface morphology of CZTSSe thin films is investigated.

  • At optimal Se amount of 0.02 g, the p-type CZTSSe film had bandgap energy, hole concentration and resistivity of 1.27 eV, 1.7 × 1019 cm-3 and 0.57 Ω cm respectively which were suitable for photovoltaic application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang W, Wang G, Chen G, Chen S, Huang Z (2017) Sol Energy 148:12–16

    Article  Google Scholar 

  2. Lai FI, Yang JF, Wei YL, Kuo SY (2017) Green Chem 19:795–802

    Article  Google Scholar 

  3. Yeh MY, Lee C, Wuu DS (2009) J Sol-Gel Sci Technol 52:65–68

    Article  Google Scholar 

  4. Vauche L, Dubois J, Laparre A, Mollica F, Bodeux R, Delbos S, Ruiz CM, Pasquinelli M, Bahi F, Monsabert TG, Jaime S, Bodnar S, Grand PP (2014) Phys Status Solidi A 9:2082–2085

    Article  Google Scholar 

  5. Guo J, Pei Y, Zhou Z, Zhou W, Kou D, Wu S (2015) Nanoscale Res Lett 10:335

    Article  Google Scholar 

  6. Phan Thi KL, Anh Tuan D, Huu Ke N, Anh LTQ, Hung LVT (2017) J Sol-Gel Sci Technol 83:324

    Article  Google Scholar 

  7. Xiao ZY, Yao B, Li YF, Ding ZH, Gao ZM, Zhao HF, Zhang LG, Zhang ZZ, Sui YR, Wang G (2016) ACS Appl Mater Interfaces 8:17334–17342

    Article  Google Scholar 

  8. Woo K, Kim Y, Yang W, Kim K, Kim I, Oh Y, Kim JY, Moon J (2013) Sci Rep 3:3069

    Article  Google Scholar 

  9. Ke NH, Trinh LTT, Mung NT, Loan PTK, Tuan DA, Truong NH, Tran CV, Hung LVT (2017) J Nanosci Nanotechnol 17:634–639

    Article  Google Scholar 

  10. Wang G, Zhao W, Cui Y, Tian Q, Gao S, Huang L, Pan D (2013) ACS Appl Mater Interfaces 5:10042–10047

    Article  Google Scholar 

  11. Ke NH, Loan PTK, Tuan DA, Dat HT, Tran CV, Hung LVT (2017) J Photochem Photobiol A 349:100–107

    Article  Google Scholar 

  12. Tian Q, Wang G, Zhao W, Chen Y, Yang Y, Huang L, Pan D (2014) Chem Mater 26:3098–3103

    Article  Google Scholar 

  13. Bag S, Gunawan O, Gokmen T, Zhu Y, Todorov TK, Mitzi DB (2012) Energy Environ Sci 5:7060–7065

    Article  Google Scholar 

  14. Duan HS, Yang W, Bob B, Hsu CJ, Lei B, Yang Y (2013) Adv Funct Mater 23:1466–1471

    Article  Google Scholar 

  15. Tanaka K, Fukui Y, Moritake N, Uchiki H (2011) Sol Energy Mater Sol Cells 95:838–842

    Article  Google Scholar 

  16. Lin X, Kavalakkatt J, Kornhuber K, Levcenko S, Steiner MCL, Ennaoui A (2013) Thin Solid Films 535:10–13

    Article  Google Scholar 

  17. Yang G, Li YF, Yao B, Ding ZH, Deng R, Zhao HF, Zhang LG, Zhang ZZ (2017) Superlattices Microstruct 109:480–489

    Article  Google Scholar 

  18. Agawane GL, Kamble AS, Vanalakar SA, Shin SW, Gang MG, Yun JH, Gwak J, Moholkar AV, Kim JH (2015) Mater Lett 158:58–61

    Article  Google Scholar 

  19. Aaron D, Barkhouse R, Gunawan O, Gokmen T, Todorov TK, Mitzi DB (2012) Prog Photovolt Res Appl 20:6–11

    Article  Google Scholar 

  20. Just J, Sutter-Fella CM, Lutzenkirchen-Hecht D, Frahm R, Schorr S, Unold T (2016) Phys Chem Chem Phys 18:15988–15994

    Article  Google Scholar 

  21. Ilari GM, Fella CM, Ziegler C, Uhl AR, Romanyuk YE, Tiwari AN (2012) Sol Energy Mater Sol Cells 104:125–130

    Article  Google Scholar 

  22. Jiang M, Li Y, Dhakal R, Thapaliya PS, Mastro MA, Caldwell J, Kub FJ, Yan X (2011) J Photon Energy 1:019501

    Article  Google Scholar 

  23. Fella CM, Romanyuk YE, Tiwari AN (2013) Sol Energy Mater Sol Cells 119:276–277

    Article  Google Scholar 

  24. Rajesh G, Muthukumarasamy N, Subramaniam EP, Agilan S, Velauthapillai D (2013) J Sol Gel Sci Technol 66:288–292

    Article  Google Scholar 

  25. Sun L, He J, Kong H, Yue F, Yang P, Chu J (2011) Sol Energy Mater Sol Cells 95:2907–2913

    Article  Google Scholar 

  26. Prabeesh P, Packia Selvam I, Potty SN (2016) Thin Solid Films 606:94–98

    Article  Google Scholar 

  27. Fernandes PA, Salome PMP, Da Cunha AF (2009) Thin Solid Films 517:2519–2523

    Article  Google Scholar 

  28. Mkawi EM, Ibrahim K, Ali MKM, Farrukh MA, Mohamed AS, Allam NK (2014) J Electroanal Chem 735:129–135

    Article  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge Vuong Nguyen Phuong Loan and To Thi Kim Ngan for their technical assistance in the experiments. This research was supported by Vietnam National University (VNU-HCM), Ho Chi Minh City, [grant number C2017-18-26].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dao Anh Tuan or Nguyen Huu Ke.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuan, D.A., Ke, N.H., Thi Kieu Loan, P. et al. A method to improve crystal quality of CZTSSe absorber layer. J Sol-Gel Sci Technol 87, 245–253 (2018). https://doi.org/10.1007/s10971-018-4708-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4708-9

Keywords:

Navigation