Skip to main content
Log in

Study of visible light emission under UV excitation in Y2O3:Er3+-Gd3+ and Y2O3:Eu3+-Gd3+ nanocrystals

  • Original Paper: Sol–gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this work, we study the Y2O3:Er3+-Gd3+ and Y2O3:Eu3+-Gd3+ nanocrystals using statistical tools in order to quantify the effect of dopant concentration, crystallite size, induced strain, and lattice parameters on luminescent parameters such as intensity and color emission. Samples were synthesized using the sol–gel method. In the case of emission properties of Y2O3:Er3+-Gd3+, the most important factor is Erbium concentration, while the energy transfer between Gadolinium-Erbium is statistically insignificant, compared to the dynamics between Erbium–Erbium ions. On the other hand, the Y2O3:Eu3+-Gd3+ emission intensity depends on the dopant concentration: an increase of Gadolinium ions increases the emission intensity, and the quadratic effect of the Eu3+ ions reduce the emission intensity. However, the color coordinate is not so influenced by the dopant concentration; in the case of Y2O3:Er3+-Gd3+ samples, the color coordinate depends only on Er3+ concentration.

Stokes luminescence process of Gd3+, Eu3+, Er3+ ions, and charge‐transfer bands responsible for the visible emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Thejo Kalyani N, Dhoble SJ (2012) Organic light emitting diodes: energy saving lighting technology—a review Renew Sustain Energy Rev 16(5):2696–2723

    Article  Google Scholar 

  2. Rangari VV, Dhoble SJ (2015) Synthesis and photoluminescence studies of Ba(Gd, Ln) B9O16:Eu3+ (Ln=La,Y) phosphors for n-UV LED lighting and display devices J Rare Earths 33(2):140–147

    Article  Google Scholar 

  3. Patra A, Friend CS, Kapoor R, Prasad PN (2002) Upconversion in Er3+:ZrO2 Nanocrystals. J Phys Chem B 106:1909–1912

    Article  Google Scholar 

  4. De la Rosa E, Diaz-Torres LA, Salas P, Rodríguez RA (2005) Visible light emission under UV and IR excitation of rare earth doped ZrO2 nanophosphor Opt Mater 27(7):1320–1325

    Article  Google Scholar 

  5. Lupei A, Lupei V, Hau S (2017) Vibronics in optical spectra of Yb3+ and Ce3+ in YAG and Y2O3 ceramics. Opt Mater 63:143–152

    Article  Google Scholar 

  6. Rodríguez VD, Tikhomirov VK, Méndez-Ramos J, Yanes AC, Moshchalkov VV (2010) Towards broad range and highly efficient down-conversion of solar spectrum by Er3+–Yb3+ co-doped nano-structured glass-ceramics Sol Energy Mater Sol Cells 64(10):1612–1617

    Article  Google Scholar 

  7. Aarts L, van der Ende BM, Meijerink A (2009) Downconversion for solar cells in NaY F4:Er; Yb J Appl Phys 106(2):23522

    Article  Google Scholar 

  8. Camposeco-Negrete C (2013) Optimization of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using Taguchi methodology and ANOVA. J Clean Prod 53:195–203

    Article  Google Scholar 

  9. Feng J, Zhang J, Zhang J, He Y, Zhang R, Chen C, Liu G (2017) Enhanced methane production of vinegar residue by response surface methodology (RSM). AMB Express 7:89

    Article  Google Scholar 

  10. Alhaji A, Razavi RS, Ghasemi A, Loghman-Estarki MR (2017) Modification of Pechini sol–gel process for the synthesis of MgO-Y2O3 composite nanopowder using sucrose-mediated technique Ceram Int 43(2):2541–2548

    Article  Google Scholar 

  11. Huízar-Félix AM, Hernández T, de la Parra S, Ibarra J, Kharisov B (2012) Sol-gel based Pechini method synthesis and characterization of Sm1−xCaxFeO3 perovskite 0.1 × 0.5. Powder Technol 229:290–293

    Article  Google Scholar 

  12. Dimesso L, Klein L, Aparicio M, Jitianu A (2016) Pechini processes: an alternate approach of the sol–gel method, preparation, properties, and applications. In: Handbook of sol-gel science and technology. Springer International Publishing, Switzerland, pp 1–22

  13. Laberty-Robert C, Ansart F, Castillo S, Richard G (2002) Synthesis of YSZ powders by the sol-gel method: Surfactant effects on the morphology Solid State Sci 4(8):1053–1059

    Article  Google Scholar 

  14. Xie Y, Wang G, Xiao LJ, Li WZ, Chen YJ, Zhang ZG, Wang YJ (2013) Effects of surfactants on particle size and luminescence properties of Ca1.98MgSiO5:Eu2+ 0.02 phosphor prepared by sol-gel method. Adv Mater Res 634:2454–2457

    Article  Google Scholar 

  15. Kriz DA, He J, Pahalagedara M, Suib SL (2017) Response to comments on the application of the Scherrer equation in “Copper aluminum mixed oxide (CuAl MO) catalyst: a green approach for the one-pot synthesis of imines under solvent-free conditions”, by Suib et al. ((2016) Appl Catal B Environ 188:227–234. https://doi.org/10.1016/j.apcatb.2016.02.007). Article type: Correspondence 202:704–705

  16. Lakowicz JR (2006) Principles of fluorescence spectroscopy principles of fluorescence spectroscopy, 3rd edn. Springer-Verlag, US, pp 1–60.

  17. Thoma RE, Insley H, Hebert GM (1966) The sodium fluoride-lanthanide trifluoride systems Inorg Chem 5(7):1222–1229

    Article  Google Scholar 

  18. Wegh RT, Meijerink A, Lamminmäki R-J, Jorma H (2000) Extending Dieke’s diagram. J Lumin 8:1002–1004

    Article  Google Scholar 

  19. Meza O, Villabona-Leal EG, Diaz-Torres LA, Desirena H, Rodríguez-López JL, Pérez E (2014) Luminescence concentration quenching mechanism in Gd2O3:Eu3+ J Phys Chem A 118(8):1390–1396

    Article  Google Scholar 

  20. Montgomery DC (2006) Design and analysis of experiments. John Wiley & Sons, US, pp 1–30

  21. Solé JG, Bausá LE, Jaque D (2005) An introduction to the optical spectroscopy of inorganic solids. John Wiley & Sons, US, Ltd., pp 1–38

  22. Meza O, Diaz-Torres La, Salas P, De la Rosa E, Solis D (2010) Color tunability of the upconversion emission in Er–Yb doped the wide band gap nanophosphors ZrO2 and Y2O3. Mater Sci Eng: B 174:177–181

    Article  Google Scholar 

  23. Ohta N, Robertson A (2005) Colorimetry: fundamentals and applications. Wiley, US, p 350

  24. Gamelin DR, Gudel HU (2001) Transition metal and rare earth compounds: excited states, transitions, interactions II, upconversion processes in transition metal and rare earth metal systems. Springer, Berlin Heidelberg, pp 1–56

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Meza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Highlights

  1. 1.

    Colorimetric properties as a function of the crystal structure, and dopant the effects are estimated.

  2. 2.

    It is possible to control the color coordinate by varying only the Er3+ concentration.

  3. 3.

    Gd3+ increases the luminescence intensity when it is combined with Eu3+ ions; however, with Er3+ ions, the combination has no effect.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, S.V., Villabona-Leal, E.G., Mixteco-Sánchez, J.C. et al. Study of visible light emission under UV excitation in Y2O3:Er3+-Gd3+ and Y2O3:Eu3+-Gd3+ nanocrystals. J Sol-Gel Sci Technol 86, 782–794 (2018). https://doi.org/10.1007/s10971-018-4661-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-018-4661-7

Keywords

Navigation