Skip to main content

Advertisement

Log in

Mechanical properties of a single SnO2 fiber prepared from the electrospinning method

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Uniform SnO2 fibers were prepared from the electrospinning method in this paper. The mechanical properties of a single SnO2 fiber were characterized by three-point bending experiments with atomic force microscopy. Finite element method was employed to simulate the shape of the SnO2 fiber during the bending process. The elastic modulus of SnO2 fibers increased with the calcined temperature. A high elastic modulus of 72.59 GPa was obtained with a diameter of 160 nm. The results indicate that atomic force microscopy tips penetrated the surfaces under maximum loading.

Graphical abstract

The force-displacement curve from simulation is in accordance with the results from experiments by using AFM and theoretical calculation. The equivalent strain nephogram indicates that the maximal strain is about 0.0143 at the midpoint of the fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu Y, Jiao Y, Zhang Z, Qu F, Umar A, Wu X (2014) Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl Mater Interf 6:2174–2184

    Article  Google Scholar 

  2. Huang B, Li X, Pei Y, Li S, Cao X, Massé RC, Cao G (2016) Novel carbon-encapsulated porous SnO2 anode for lithium-ion batteries with much improved cyclic stability. Small 12:1945–1955

    Article  Google Scholar 

  3. Ma N, Suematsu K, Yuasa M, Kida T, Shimanoe K (2015) Effect of water vapor on Pd-loaded SnO2 nanoparticles gas sensor. ACS Appl Mater Interf 7:5863–5869

    Article  Google Scholar 

  4. Kida T, Fujiyama S, Suematsu K, Yuasa M, Shimanoe K (2013) Pore and particle size control of gas sensing films using SnO2 nanoparticles synthesized by seed-mediated growth: design of highly sensitive gas sensors. J Phys Chem C 117:17574–17582

    Article  Google Scholar 

  5. Zhuang S, Xu X, Feng B, Hu J, Pang Y, Zhou G, Tong L, Zhou Y (2014) Photogenerated carriers transfer in dye–graphene–SnO2 composites for highly efficient visible-light photocatalysis. ACS Appl Mater Interf 6:613–621

    Article  Google Scholar 

  6. Sinha AK, Pradhan M, Sarkar S, Pal T (2013) Large-scale solid-state synthesis of Sn–SnO2 nanoparticles from layered SnO by sunlight: a material for dye degradation in water by photocatalytic reaction. Environ Sci Technol 47:2339–2345

    Article  Google Scholar 

  7. Zhao Q, Ju D, Deng X, Huang J, Cao B, Xu X (2015) Morphology-modulation of SnO2 hierarchical architectures by Zn doping for glycol gas sensing and photocatalytic applications. Sci Rep 5:7874

    Article  Google Scholar 

  8. Wang Y, Huang ZX, Shi Y, Wong JI, Ding M, Yang HY (2015) Designed hybrid nanostructure with catalytic effect: beyond the theoretical capacity of SnO2 anode material for lithium ion batteries. Sci Rep 5:9164

    Article  Google Scholar 

  9. Yesibolati N, Shahid M, Chen W, Hedhili MN, Reuter MC, Ross FM, Alshareef HN (2014) SnO2 anode surface passivation by atomic layer deposited HfO2 improves Li-Ion battery performance. Small 10:2849–2858

    Article  Google Scholar 

  10. Zhou X, Wan L-J, Guo Y-G (2013) Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv Mater 25:2152–2157

    Article  Google Scholar 

  11. Gubbala S, Chakrapani V, Kumar V, Sunkara MK (2008) Band-edge engineered hybrid structures for dye-sensitized solar cells based on SnO2 nanowires. Adv Funct Mater 18:2411–2418

    Article  Google Scholar 

  12. Kuang Q, Lao C, Wang ZL, Xie Z, Zheng L (2007) High-sensitivity humidity sensor based on a single SnO2 nanowire. J Am Chem Soc 129:6070–6071

    Article  Google Scholar 

  13. Huang JY, Zhong L, Wang CM, Sullivan JP, Xu W, Zhang LQ, Mao SX, Hudak NS, Liu XH, Subramanian A, Fan H, Qi L, Kushima A, Li J (2010) In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330:1515–1520

    Article  Google Scholar 

  14. Park M-S, Wang G-X, Kang Y-M, Wexler D, Dou S-X, Liu H-K (2007) Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angewandte Chemie 119:764–767

    Article  Google Scholar 

  15. Zhang L, Yang M, Zhang S, Wu Z, Amini A, Zhang Y, Wang D, Bao S, Lu Z, Wang N, Cheng C (2016) V(2)O(5)-C-SnO(2) hybrid nanobelts as high performance anodes for lithium-ion batteries. Sci Rep 6:33597

    Article  Google Scholar 

  16. Li HZ, Yang LY, Liu J, Li ST, Fang LB, Lu YK, Yang HR, Liu SL, Lei M (2016) Improved electrochemical performance of yolk-shell structured SnO2@void@C porous nanowires as anode for lithium and sodium batteries. J Power Sources 324:780–787

    Article  Google Scholar 

  17. Yang D-J, Kamienchick I, Youn DY, Rothschild A, Kim I-D (2010) Ultrasensitive and highly selective gas sensors based on electrospun SnO2 nanofibers modified by Pd loading. Adv Funct Mater 20:4258–4264

    Article  Google Scholar 

  18. Schipani F, Miller DR, Ponce MA, Aldao CM, Akbar SA, Morris PA, Xu JC (2017) Conduction mechanisms in SnO2 single-nanowire gas sensors: an impedance spectroscopy study. Sens Actuators B 241:99–108

    Article  Google Scholar 

  19. Haoyun C, Yi L, Hong W, Xiang X, Jun P (2016) FIB-tomographic studies on chemical vapor deposition grown SnO2 nanowire arrays on TiO2 (001). Mater Res Express 3:125016

    Article  Google Scholar 

  20. Nguyen TQ, Atla V, Vendra VK, Thapa AK, Jasinski JB, Druffel TL, Sunkara MK (2016) Scalable solvo-plasma production of porous tin oxide nanowires. Chem Eng Sci 154:20–26

    Article  Google Scholar 

  21. Paulowicz I, Hrkac V, Kaps S, Cretu V, Lupan O, Braniste T, Duppel V, Tiginyanu I, Kienle L, Adelung R, Mishra YK (2015) Three-dimensional SnO2 nanowire networks for multifunctional applications: from high-temperature stretchable ceramics to ultraresponsive sensors. Adv Electronic Mater 1:1500081-n/a

    Article  Google Scholar 

  22. Chen S, Wang M, Ye J, Cai J, Ma Y, Zhou H, Qi L (2013) Kinetics-controlled growth of aligned mesocrystalline SnO2 nanorod arrays for lithium-ion batteries with superior rate performance, Nano. Research 6:243–252

    Google Scholar 

  23. Shin J, Choi S-J, Lee I, Youn D-Y, Park CO, Lee J-H, Tuller HL, Kim I-D (2013) Thin-wall assembled SnO2 fibers functionalized by catalytic Pt nanoparticles and their superior exhaled-breath-sensing properties for the diagnosis of diabetes. Adv Funct Mater 23:2357–2367

    Article  Google Scholar 

  24. Ab Kadir R, Li Z, Sadek AZ, Abdul Rani R, Zoolfakar AS, Field MR, Ou JZ, Chrimes AF, Kalantar-zadeh K (2014) Electrospun granular hollow SnO2 nanofibers hydrogen gas sensors operating at low temperatures. J Phys Chem C 118:3129–3139

    Article  Google Scholar 

  25. Mohanapriya P, Pradeepkumar R, Jaya NV, Natarajan TS (2014) Magnetic and optical properties of electrospun hollow nanofibers of SnO2 doped with Ce-ion. Appl Phys Lett 105:022406

    Article  Google Scholar 

  26. Hong YJ, Yoon J-W, Lee J-H, Kang YC, New A (2015) Concept for obtaining SnO2 fiber-in-tube nanostructures with superior electrochemical properties. Chem Eur J 21:371–376

    Article  Google Scholar 

  27. Wang Z, Li Z, Jiang T, Xu X, Wang C (2013) Ultrasensitive hydrogen sensor based on Pd0-loaded SnO2 electrospun nanofibers at room temperature. ACS Appl Mater Interf 5:2013–2021

    Article  Google Scholar 

  28. Wu J, Zeng D, Tian S, Xu K, Li D, Xie C (2015) Competitive influence of surface area and mesopore size on gas-sensing properties of SnO2 hollow fibers. J Mater Sci 50:7725–7734

    Article  Google Scholar 

  29. Tan EPS, Lim CT (2004) Physical properties of a single polymeric nanofiber. Appl Phys Lett 84:1603–1605

    Article  Google Scholar 

  30. Cao J, Zhang T, Li F, Yang H, Liu S (2013) Enhanced ethanol sensing of SnO2 hollow micro/nanofibers fabricated by coaxial electrospinning. New J Chem 37:2031–2036

    Article  Google Scholar 

  31. Ding Y, Zhang P, Jiang Y, Xu F, Yin J, Zuo Y (2009) Mechanical properties of nylon-6/SiO2 nanofibers prepared by electrospinning. Mater Lett 63:34–36

    Article  Google Scholar 

  32. Ding Y, Zhang P, Long Z, Jiang Y, Yin J, Xu F, Zuo Y (2009) The elastic module of Ag nanowires prepared from electrochemical deposition. J Alloys Compd 474:223–225

    Article  Google Scholar 

  33. Ping Z, Chengwei W, Xiaodong L (2008) Three-point bending Young’s modulus of nanowires. Meas Sci Technol 19:115703

    Article  Google Scholar 

  34. Li R, Bao L, Li X (2011) Synthesis, structural, optical and mechanical characterization of SrB2O4 nanorods. CrystEngComm 13:5858–5862

    Article  Google Scholar 

  35. Hai N, Xiaodong L (2006) Young’s modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques. Nanotechnology 17:3591

    Article  Google Scholar 

  36. Tan EPS, Lim CT (2006) Mechanical characterization of nanofibers–A review. Compos Sci Technol 66:1102–1111

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from the National Natural Science Foundation of China (No. 51508489 and 51002128), the Natural Science Foundation of Hunan Province (No. 2015JJ3115), and the Scientific Research Foundation of Hunan Provincial Education Department (No. 17A205 and 15B235) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

X. Liu and Z. Li contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, Z., Jiang, Y.H. et al. Mechanical properties of a single SnO2 fiber prepared from the electrospinning method. J Sol-Gel Sci Technol 84, 152–157 (2017). https://doi.org/10.1007/s10971-017-4491-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4491-z

Keywords

Navigation