Skip to main content
Log in

Nanocrystalline ZnO–SnO2 mixed metal oxide powder: microstructural study, optical properties, and photocatalytic activity

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, nanocrystalline ZnO–SnO2 mixed metal oxide powder was prepared by co-precipitation using Zn(CH3COO)2∙2H2O and SnCl4∙5H2O as precursor materials. The powder was characterized by X–ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. Williamson–Hall method was used to evaluate the micro structural parameters of ZnO–SnO2 such as crystallite sizes and lattice strain. The photoluminescence property of the sample was studied at different temperatures (10–300 K). Results showed that the emission intensity decreases with temperature increasing. The photocatalytic activity at the gas–solid interface was assessed by monitoring the degradation of nitrogen oxides, a major atmospheric pollutant. The results show that the nanocrystalline ZnO–SnO2 mixed metal oxide powder exhibits higher and more stable photocatalytic activity against photocorrosion than ZnO alone.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Marci G, Augugliaro V, López–Muñoz MJ, Martin C, PalmisanoL, Rives V, Schiavello M, Tilley RJ, Venezia AM (2001) Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems. 1. Surface and bulk characterization. J Phys Chem B 105(5):1026–1032

    Article  Google Scholar 

  2. Shi L, LiC, GuH FD (2000) Morphology and properties of ultrafine SnO2–TiO2 coupled semiconductor particles. Mater Chem Phys 62(1):62–67

    Article  Google Scholar 

  3. Kant Sharma R, Ghose R (2014) Synthesis of nanocrystalline CuO–ZnO mixed metal oxide powder by a homogeneous precipitation method. Ceram Int l40:10919–10926

    Article  Google Scholar 

  4. Huber F, Venvik H, Ronning M, Walmsley J, Holmen A (2008) Preparation and characterization of nanocrystalline, high-surface area Cu–Ce–Zr mixed oxide catalysts from homogeneous co-precipitation. Chem Eng J 137:686–702

    Article  Google Scholar 

  5. Hwang IS, Kim SJ, Choi JK, Choi J, Ji H, Kim GT, Cao G, Lee JH (2010) Synthesis and gas sensing characteristics of highly crystalline ZnO–SnO2 core–shell nanowires. Sen Act B 148(2):595–600

    Article  Google Scholar 

  6. Ahmad M, Yingying S, Sun H, Shen W, Zhu J (2012) SnO2/ZnO composite structure for the lithium–ion battery electrode. J Solid State Chem 196:326–331

    Article  Google Scholar 

  7. Dharmadasa R, Wijayantha KU, Tahir AA (2010) ZnO–SnO2 composite anodes in extremely thin absorber layer (ETA) solar cells. J Electroanal Chem 646(1):124–132

    Article  Google Scholar 

  8. Zhang M, Sheng G, Fu J, An T, Wang X, Hu X (2005) Novel preparation of nanosizedZnO–SnO2 with high photocatalytic activity by homogeneous co–precipitation method. Mater Lett 59(28):3641–3644

    Article  Google Scholar 

  9. Hoel CA, Mason TO, Gaillard JF, Poeppelmeier KR (2010) Transparent conducting oxides in the ZnO–In2O3–SnO2 system. Chem Mater 22(12):3569–3579

    Article  Google Scholar 

  10. Kumar S, Nigam R, Kundu V, Jaggi N (2015) Sol–gel synthesis of ZnO–SnO2 nanocomposites and their morphological, structural and optical properties. J Mater Sci 26(5):3268–3274

    Google Scholar 

  11. Liu ZQ, Ding LX, Wang ZL, Mao YC, Xie SL, Zhang YM, Lia GR, Tong YX (2012) ZnO/SnO2 hierarchical and flower–like nanostructures: facile synthesis, formation mechanism, and optical and magnetic properties. Cryst Eng Comm 14(6):2289–2295

    Article  Google Scholar 

  12. Chang T, Li Z, Yun G, Jia Y, Yang H (2013) Enhanced photocatalytic activity of ZnO/CuO nanocomposites synthesized by hydrothermal method. Nano–Micro Lett 5(3):163–168

    Google Scholar 

  13. Vijayalakshmi K, Karthick K (2014) High quality ZnO/CuO nanocomposites synthesized by microwave assisted reaction. J Mater Sci 25(2):832–836

    Google Scholar 

  14. Ngamcharussrivichai C, Totarat P, Bunyakiat K (2008) Caand Znmixed oxide as a hetero generous base catalyst fortransesterification of palm kernel oil. Appl Catal A 341:77–85

    Article  Google Scholar 

  15. Zhao X, Zhang F, Xu S, Evans DG, Duan X (2010) From layered double hydroxides to ZnO-based mixed metal oxides by thermal decomposition: transformation mechanism and UV-blocking properties of the product. Chem Mater 22:3933–3942

    Article  Google Scholar 

  16. Li Z, Xiang X, Bai L, Li F (2012) A nanocomposite precursorstrategyto mixed-metal oxide switch excellent catalytic activity for thermal decomposition of ammonium perchlorate. Appl Clay Sci 65–66:14–20

    Article  Google Scholar 

  17. Cui H, Zayat M, Levy D (2005) Sol–gel synthesis of nanoscaled spinelsusing propylene oxide as gelationagent. J Sol–Gel Sci Technol 35:175–181

    Article  Google Scholar 

  18. Zamiri R, Abbastabar Ahangar H, Tobaldi DM, Rebelo A, Seabra MP, Shabani M, Ferreira JMF (2014) Fabricating and characterizing ZnO–ZnS–Ag2S ternary nanostructures with efficient solar–light photocatalytic activity. Phys Chem Chem Phys 16(40):22418–22425

    Article  Google Scholar 

  19. Khorsand Zak A, AbdMajid WH, Abrishami ME, Yousefi R (2011) Solid State Sci 13(1):251–256

    Article  Google Scholar 

  20. Srinivasan G, Kumar RTR, Kumar J (2007) J Sol–Gel Sci Technol 43(2):171–177

    Article  Google Scholar 

  21. Cullity BD (1978) Elements of X-ray Diffractions. Addison-Wesley, Reading, MA

    Google Scholar 

  22. Williamson GK, Hall WH (1953) X–ray line broadening from filed aluminium and wolfram. Acta Metall 1(1):22–31

    Article  Google Scholar 

  23. Scardi P, Leoni M, Delhez R (2004) Line broadening analysis using integral breadth methods: a critical review. J Appl Cryst 37(3):381–390

    Article  Google Scholar 

  24. Barret CS, Massalski TB (1980) Structure of Metals Pergamon Press, Oxford

    Google Scholar 

  25. Tauc J (1968) Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull 3(1):37–46

    Article  Google Scholar 

  26. Michalow KA, Logvinovich D, Weidenkaff A, Amberg M, Fortunato G, Heel A, Graule T, Rekas M (2009) Synthesis, characterization and electronic structure of nitrogen–doped TiO2nanopowder. Catal Today 144(1):7–12

    Article  Google Scholar 

  27. Caglar Y, Caglar M, Ilican S, Yakuphanoglu F (2009) Determination of the electronic parameters of nanostructure SnO2/p–Si diode. Microelectronic Eng 86(10):2072–2077

    Article  Google Scholar 

  28. Abass AK, Al‐Liabi NA, Taha WA (1988) Optical properties of bromine‐doped SnO2 coatings for solar applications. Physica Status Solidi 106(2):613–618

    Article  Google Scholar 

  29. Dolgonos A, Mason TO, Poeppelmeier KR (2016) Direct optical band gap measurement in polycrystalline semiconductors: a critical look at the Tauc method. J Solid State Chem 240:43–48

    Article  Google Scholar 

  30. Borgwardt M, Wilke M, Kampen T, Mähl S, Xiao M,Spiccia L, Lange KM, Kiyan IY, Aziz EF (2016) Charge transfer dynamics at dye–sensitized ZnO and TiO2 interfaces studied by ultrafast XUV photoelectron spectroscopy. Scientific reports 6:24422–24429

  31. Hamrouni A, Moussa N, Parrino F, Di Paola A, Houas A, Palmisano L (2014) Sol–gel synthesis and photocatalytic activity of ZnO–SnO2 nanocomposites. J Mol Catal A 390:133–141

    Article  Google Scholar 

  32. Rashad MM, Kandil AHT, Ismail AA, Osama I, Ibrahim IA (2014) Photocatalytic decomposition of dyes using ZnO doped SnO2 nanoparticles prepared by solvothermal method. Arabian J Chem 7:71–77

    Article  Google Scholar 

  33. Song C, Dong X (2012) Preparation and Characterization of Tetracomponent ZnO/SiO2/SnO2/TiO2Composite Nanofibers by Electrospinning. Adv Chem Eng Sci 2:108–112

    Article  Google Scholar 

  34. Zamiri R, Zakaria A, Ahanger HA, Darroudi M, Zak AK, Drummen GP (2012) Aqueous starch as a stabilizer in zinc oxide nanoparticle synthesis via laser ablation. J Alloys Compd 516:41–48

    Article  Google Scholar 

  35. Zamiri R, Chenari HM, Moafi HF, Shabani M, Salehizadeh SA, Rebelo A, Kumar JS, Graça MP, Soares MJ, Ferreira JM (2016) Ba–doped ZnO nanostructure: X–ray line analysis and optical properties in visible and low frequency infrared. Ceram Int 42(11):12860–12867

    Article  Google Scholar 

  36. Tobaldi DM, Seabra MP, Otero–Irurueta G, De Miguel YR, Ball RJ, Singh MK, Pullar RC, Labrincha JA (2015) Quantitative XRD characterisation and gas–phase photocatalytic activity testing for visible–light (indoor applications) of KRONO Clean 7000®. RSC Adv 5(124):102911–102918

    Article  Google Scholar 

  37. Ibusuki T, Takeuchi K (1994) Removal of low concentration nitrogen oxides through photoassisted heterogeneous catalysis. J Mol Catal 88(1):93–102

    Article  Google Scholar 

  38. Zhang H, Chen G, Bahnemann DW (2009) Photoelectrocatalytic materials for environmental applications. J Mater Chem 19(29):5089–50121

    Article  Google Scholar 

  39. Xu Y, Schoonen MA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 85(3–4):543–556

    Article  Google Scholar 

  40. Zhang M, An T, Hu X, Wang C, Sheng G, Fu J (2004) Preparation and photocatalytic properties of a nanometer ZnO–SnO2 coupled oxide. Appl Catal A 260(2):215–222

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Zamiri.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudi Chenari, H., Zamiri, R., Maria Tobaldi, D. et al. Nanocrystalline ZnO–SnO2 mixed metal oxide powder: microstructural study, optical properties, and photocatalytic activity. J Sol-Gel Sci Technol 84, 274–282 (2017). https://doi.org/10.1007/s10971-017-4484-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4484-y

Keywords

Navigation