Skip to main content
Log in

Ethylene polymerization and hydrodechlorination of 1,2-dichloroethane mediated by nickel(II) covalently anchored to silica xerogels

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Ni/SiO2 cogelled xerogel catalysts have been prepared in ethanol containing nickel acetylacetonate, tetraethoxysilane (TEOS), an aqueous ammonia solution of 0.54 mol L−1 and either a commercial sylilated ligand, 3-(2-aminoethyl)aminopropyltrimethoxysilane (EDAPMS), or a home-made new silylated pyrazolypyridine ligands, respectively 2-[4-[3-(trimethoxysilyl)propyl]-3,5-dimethyl-1H-pyrazol-1-yl]pyridine (MS-PzPy) and 2-[4-[3-(trimethoxysilyl)propyl]-3,5-dimethyl-1H-pyrazol-1-yl]-6-methylpyridine (MS-PzPyMe), able to form a chelate with a metal ion such as Ni2+. All samples form homogeneous and very highly dispersed Ni/SiO2 cogelled xerogel catalysts. The resulting catalysts are composed of nickel nanoparticles with a diameter of about 2.8 nm, located inside primary silica particles exhibiting a monodisperse microporous distribution. The silylated organic ligand has a strong influence on the textural properties of cogelled xerogel catalysts, both before and after calcination and reduction steps. Changing the nature of the silylated ligand permits tailoring textural properties such as pore volume, pore size and surface area. Homogenous nickel complexes synthesized from pyrazolylpyridine derivatives are inactive for ethylene polymerization. In opposite, heterogenous nickel-based catalysts onto silica xerogel synthesized from pyrazolylpyridine derivatives bearing a tethered trialkoxysilyl group allow increasing ethylene polymerization activity. Although nickel nanoparticles are located inside the silica crystallites, their complete accessibility, via the micropore network, has been shown. For 1,2-dichloroethane hydrodechlorination over Ni/SiO2 catalysts, the conversion of 1,2-dichloroethane is high at the temperature of 350 °C and mainly ethane is produced.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Price PM, Clarck JH, Macquarrie DJ (2000) Modified silicas for clean technology. J Chem Soc Dalton Trans 1:101–105

    Article  Google Scholar 

  2. Busca G (2014) Heterogeneous catalytic materials—Solid state chemistry, surface chemistry and catalytic behaviour. Elsevier, Amsterdam

    Google Scholar 

  3. Brinker CJ, Scherer GW (1990) Sol-Gel science: The physics and chemistry of sol-gel processing. Academic Press, San Diego, CA

    Google Scholar 

  4. Husing N, Schubert U, Mezei R, Fratzl P, Riegel B, Kiefer W, Kohler D, Mader W (1999) Formation and Structure of Gel Networks from Si(OEt)4/(MeO)3Si(CH2)3NR' 2 Mixtures (NR' 2 = NH2 or NHCH2CH2NH2). Chem Mater 11:451-457 

    Google Scholar 

  5. Lambert S, Ferauche F, Heinrichs B, Tcherkassova N, Pirard JP, Alié C (2006) Methods for the preparation of bimetallic xerogel catalysts designed for chlorinated wastes processing. J Non-Cryst Solids 352:2751–2762

    Article  Google Scholar 

  6. Lambert S, Tran KY, Arrachart G, Noville F, Henrist C, Bied C, Moreau JJE, Wong Chi Man M, Heinrichs B (2008) Tailor-made morphologies for Pd/SiO2 catalysts through sol-gel process with various silylated ligands. Microporous Mesoporous Mater 115:609–617

    Article  Google Scholar 

  7. Pirard S, Mahy J, Pirard JP, Heinrichs B, Raskinet L, Lambert SD (2015) Development by the sol-gel process of highly dispersed Ni-Cu/SiO2 xerogel catalysts for selective 1,2-dichloroethane hydrodechlorination into ethylene. Microporous Mesoporous Mater 209:197–207

    Article  Google Scholar 

  8. Mahy JG, Tasseroul L, Herlitschke M, Hermann RP, Lambert SD (2016) Fe3+/iron oxide/SiO2 xerogel catalysts for p-nitrophenol degradation by photo-Fenton effects: Influence of thermal treatment on catalysts texture. Mater Today 3:464–469

    Article  Google Scholar 

  9. Younkin TR, Connor EF, Henderson JI, Friedrich SK, Grubbs RH, Bansleben DA (2000) Neutral, Single-Component Nickel (II) Polyolefin Catalysts That Tolerate Heteroatoms. Science 287:460–462

    Article  Google Scholar 

  10. Britovsek GJP, Bruce M, Gibson VC, Kimberley BS, Maddox PJ, Mastroianni S, McTavish SJ, Redshaw C, Solan GA, Strömberg S, White AJP, Williams DJ (1999) Iron and cobalt ethylene polymerization catalysts bearing 2,6-bis(imino) Pyridyl ligands: synthesis, structures, and polymerization studies. J Am Chem Soc 121:8728–8732

    Article  Google Scholar 

  11. Wang S, Sun WH, Redshaw C (2014) Recent progress on nickel-based systems for ethylene oligo-/polymerization catalysis. J Organomet Chem 751:717–741

    Article  Google Scholar 

  12. Zhang D, Meng J, Tian S (2015) Nickel cyclopentadienyl complexes as catalysts for ethylene polymerization. J Organomet Chem 798:341–346

    Article  Google Scholar 

  13. Nelana SM, Darkwa J, Guzei IA, Mapolie SF (2004) Ethylene polymerization catalyzed by substituted pyrazole nickel complexes. J Organomet Chem 689:1835–1842

    Article  Google Scholar 

  14. Obuah C, Omondi B, Nozaki K, Darkwa J (2014) Solvent and co-catalyst dependent pyrazolylpyridinamine and pyrazolylpyrroleamine nickel(II) catalyzed oligomerization and polymerization of ethylene. J Mol Catal A Chem 382:31–40

    Article  Google Scholar 

  15. Sacco L, Lambert S, Pirard JP, Noels AF (2004) Synthesis of pyrazolylpyridine derivatives bearing a tethered alkoxysilyl group. Synthesis 5:663–665

    Google Scholar 

  16. Zhang L, Castillejos E, Serp P, Sun WH, Durand J (2014)Enhanced ethylene polymerization of Ni(II) complexes supported on carbon nanotubes. Catal Today 235:33–40

    Article  Google Scholar 

  17. Fujii K, Ishihama Y, Sakuragi T, Ohshima MA, Kurokawa H, Miura H (2008) Heterogeneous catalysts immobilizing α-diimine nickel complexes into fluorotetrasilicic mica interlayers to prepare branched polyethylene from only ethylene. Catal Commun 10:183–186

    Article  Google Scholar 

  18. Kurokawa H, Hayasaka M, Yamamoto K, Sakuragi T, Ohshima MA, Miura H (2014) Self-assembled heterogeneous late transition–metal catalysts for ethylene polymerization; New approach to simple preparation of iron and nickel complexes immobilized in clay mineral interlayer. Catal Commun 47:13–17

    Article  Google Scholar 

  19. Ochedzan-Siodlak W, Dziubek K (2014) Metallocenes and post-metallocenes immobilized on ionic liquid-modified silica as catalysts for polymerization of ethylene. Appl Catal A 484:134–141

    Article  Google Scholar 

  20. Nandi M, Roy P, Uyama H, Bhaumik A (2011) Functionalized mesoporous silica supported copper (II) and nickel (II) catalysts for liquid phase oxidation of olefins. Dalton Trans 40:12510–12518

    Article  Google Scholar 

  21. Yates DJC, Sinfelt JH (1967) The catalytic activity of rhodium in relation to its state of dispersion. J Catal 8:348–359

    Article  Google Scholar 

  22. Scholten JJF, Konvalinka JA, Beekman FW (1973) Reaction of nitrous oxide and oxygen with silver surfaces, and application to the determination of free-silver surface areas of catalysts. J Catal 28:209–221

    Article  Google Scholar 

  23. Bergeret G, Gallezot P (1997) Bimetallic catalysts. In: Ertl G, Knözinger H, Weitkamp J (eds), Handbook of heterogeneous catalysis, Wiley-VCH, Weinheim

  24. Lecloux AJ (1981) Texture of catalysts. In: Anderson JR, Boudart M (ed), Catalysis: Science and technology, Vol. 2, Springer, Berlin

  25. Raman NK, Anderson MT, Brinker CJ (1996) Template-Based Approaches to the Preparation of Amorphous, Nanoporous Silicas. Chem Mater 8:1682–1691

    Article  Google Scholar 

  26. Ponec V, Bond GC (1995) Catalysis by metals and alloys. Elsevier, Amsterdam

    Google Scholar 

  27. Watton SP, Taylor CM, Kloster GM, Bowman SC (2003) Chapter 4: Coordination Complexes in Sol-Gel Silica Materials. In: Karlin KD (ed), Progress in inorganic chemistry, Vol. 51, Wiley-VCH, Weinheim

  28. Lambert S, Polard JF, Pirard JP, Heinrichs B (2004) Improvement of metal dispersion in Pd/SiO2 cogelled xerogel catalysts for 1,2-dichloroethane hydrodechlorination. Appl Catal B 50:127–140

    Article  Google Scholar 

  29. Bozzelli JW, Chen YM, Chuang SSC (1992) Catalytic hydrodechlorination of 1.2-dichloroethane and trichloroethane over Rh/SiO2 catalysts. Chem Eng Commun 115:1–11

    Article  Google Scholar 

  30. Kulkarni PP, Deshmukh SS, Kovalchuk VI, d’Itri JL (1999) Hydrodechlorination of dichlorodifluoromethane on carbon‐supported Group VIII noble metal catalysts. Catal Lett 61:161–166

    Article  Google Scholar 

  31. Srebowata W, Juszczyk Z, Kaszkur Z, Karpinski Z (2007) Hydrodechlorination of 1,2-dichloroethane on active carbon supported palladium–nickel catalysts. Catal Today 124:28–35

    Article  Google Scholar 

  32. Avdeev VI, Kovalchuk VI, Zhidomirov GM (2007) DFT analysis of the mechanism of 1,2-dichloroethane dechlorination on supported Cu-Pt bimetallic catalysts. J Struct Chem 48:S171–S183

    Article  Google Scholar 

Download references

Acknowledgements

SDL. is grateful to the Belgian “Fonds de la Recherche Scientifique—Fonds National de la Recherche Scientifique (F.R.S.-F.N.R.S)” for her research associate position. The authors acknowledge the Ministère de la Région Wallonne Direction Générale des Technologies, de la Recherche et de l’Energie (DG06) and the Fonds de Recherche Fondamentale Collective and the Ministère de la Communauté Française (Action de Recherche Concertée no. 00-05-265) for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphanie D. Lambert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahy, J.G., Claude, V., Sacco, L. et al. Ethylene polymerization and hydrodechlorination of 1,2-dichloroethane mediated by nickel(II) covalently anchored to silica xerogels. J Sol-Gel Sci Technol 81, 59–68 (2017). https://doi.org/10.1007/s10971-016-4272-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4272-0

Keywords

Navigation