Skip to main content
Log in

Sol–Gel Preparation of Samaria Catalysts for the Oxidative Coupling of Methane

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A new sol–gel synthesis route for alumina–samaria mixed aero- and xerogel catalysts based on the so-called epoxide addition method and the use of these systems as catalysts for the oxidative coupling of methane (OCM) is reported. As precursors simple chloride or nitrate salts can be used. The mesoporous materials are X-ray amorphous even after calcination to 800 °C and show an intimate mixing of Al and Sm on the nanoscale. In the case of the xerogels derived from chlorides, C2 yields comparable to pure samaria can be achieved under OCM reaction conditions with 100 % O2 conversion. Even at lower O2 conversions the activity of the xerogel is competitive with a pure samaria reference catalyst taking the lower samaria content of 20 % into account. Accordingly, the approach is suitable to reduce the costs associated with the rare earth oxide. In addition to the preparation of aerogel and xerogel particles, the presented synthesis also allows the fabrication of xerogel films which can be coated on a suitable (monolithic) support. First results of such films are presented.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bundesanstalt für Geowissenschaften und Rohstoffe (2012) Reserves, Resources and Availability of Energy Resources

  2. Holmen A (2009) Catal Today 142:2–8

    Article  CAS  Google Scholar 

  3. Lunsford JH (1995) Angew Chem Int Ed 34:970–980

    Article  CAS  Google Scholar 

  4. Choudhary V (1991) J Catal 130:411–422

    Article  CAS  Google Scholar 

  5. Ito T, Lunsford JH (1985) Nature 314:721–722

    Article  CAS  Google Scholar 

  6. Jiang ZC, Yu CJ, Fang XP (1993) S.B., Li, H.L. Wang. J Phys Chem 97:12870–12875

    Article  CAS  Google Scholar 

  7. Arndt S, Otremba T, Simon U, Yildiz M, Schubert H, Schomäcker R (2012) Appl Catal A 425–426:53–61

    Article  Google Scholar 

  8. Arndt S, Simon U, Heitz S, Berthold A, Beck B, Görke O, Epping J-D, Otremba T, Aksu Y, Irran E, Laugel G, Driess M, Schubert H, Schomäcker R (2011) Top Catal 54:1266–1285

    Article  CAS  Google Scholar 

  9. Elkins TW, Neumann B, Bäumer M, Hagelin-Weaver HE (2014) ACS Catal 4:1972–1990

    Article  CAS  Google Scholar 

  10. Otsuka K, Jinno K, Morikawa A (1986) J Catal 100:353–359

    Article  CAS  Google Scholar 

  11. Forlani O, Rossini S (1992) Mater Chem Phys 31:155–158

    Article  CAS  Google Scholar 

  12. Otsuka K, Inno K (1985) Chem Lett 144:499–500

    Article  Google Scholar 

  13. Elkins TW, Hagelin-Weaver HE (2013) Appl Catal A 454:100–114

    Article  CAS  Google Scholar 

  14. Vereshchagin SN, Ross JRH (1995) Catal Today 24:285–287

    Article  CAS  Google Scholar 

  15. Capitán MJ, Malet P, Centeno MA, Munoz-Paez A, Carrizosa I, Odriozola JA (1993) J Phys Chem 97:9233–9240

    Article  Google Scholar 

  16. Baumann TF, Gash AE, Chinn SC, Sawvel AM, Maxwell RS, Satcher JH (2005) Chem Mater 17:395–401

    Article  CAS  Google Scholar 

  17. Tokudome Y, Nakanishi K, Kanamori K, Fujita K, Akamatsu H, Hanada T (2009) J Colloid Interface Sci 338:506–513

    Article  CAS  Google Scholar 

  18. Debecker DP, Mutin PH (2012) Chem Soc Rev 41:3624–3650

    Article  CAS  Google Scholar 

  19. Gash AE, Tillotson TM, Satcher JH, Poco JF, Hrubesh LW, Simpson RL (2001) Chem Mater 13:999–1007

    Article  CAS  Google Scholar 

  20. Koebel MM, Nadargi DY, Jimenez-Cadena G, Romanyuk YE (2012) ACS Appl Mater Interfaces 4:2464–2473

    Article  CAS  Google Scholar 

  21. Aigler JM, Lunsford JH (1991) Appl Catal 70:29–42

    Article  CAS  Google Scholar 

  22. Wang W, Ji S, Pan D, Li C (2011) Fuel Process Technol 92:541–546

    Article  CAS  Google Scholar 

  23. Liu H, Yang D, Gao R, Chen L, Zhang S, Wang X (2008) Catal Commun 9:1302–1306

    Article  CAS  Google Scholar 

  24. Neumann B, Elkins TW, Dreher W, Hagelin-Weaver H, Nino JC, Bäumer M (2013) Catal Sci Technol 3:89–93

    Article  CAS  Google Scholar 

  25. Bytyn W, Baerns M (1986) Appl Catal 28:199–207

    Article  CAS  Google Scholar 

  26. Rane VH, Chaudhari ST, Choudhary VR (2008) J Nat Gas Chem 17:313–320

    Article  CAS  Google Scholar 

  27. Choudhary VR, Rane VH, Chaudhari ST (1997) Appl Catal A 158:121–136

    Article  CAS  Google Scholar 

  28. Clapsaddle BJ, Neumann B, Wittstock A, Sprehn DW, Gash AE, Satcher JH, Simpson RL, Bäumer M (2012) J Sol–gel Sci Technol 64:381–389

    Article  CAS  Google Scholar 

  29. Oudet F (1988) J Catal 114:112–120

    Article  CAS  Google Scholar 

  30. Schaper H, Doesburg EBM, Van Reijen LL (1983) Appl Catal 7:211–220

    Article  CAS  Google Scholar 

  31. Spinicci R, Marini P, De Rossi S, Faticanti M, Porta P (2001) J Mol Catal A 176:253–265

    Article  CAS  Google Scholar 

  32. Baidya T, van Vegten N, Verel R, Jiang Y, Yulikov M, Kohn T, Jeschke G, Baiker A (2011) J Catal 281:241–253

    Article  CAS  Google Scholar 

  33. Ferreira VJ, Tavares P, Figueiredo JL, Faria JL (2013) Catal Commun 42:50–53

    Article  CAS  Google Scholar 

  34. Taniewski M, Lachowicz A, Lachowicz R, Czechowicz D, Skutil K (1994) Ind Eng Chem Res 33:185–190

    Article  CAS  Google Scholar 

  35. Towell GD, Martin JJ (1961) AlChE Journal 7:693–696

    Article  CAS  Google Scholar 

  36. Wischert R, Copéret C, Delbecq F, Sautet P (2011) Angew Chem 123:3260–3263

    Article  Google Scholar 

  37. Martin GA, Mirodatos C (1995) Fuel Process Technol 42:179–215

    Article  CAS  Google Scholar 

  38. Burch R, Chalker S, Loader P, Rice DA, Webb G (1991) Appl Catal A 79:265–279

    Article  CAS  Google Scholar 

  39. Burch R, Chalker S, Loader P, Thomas JM, Ueda W (1992) Appl Catal A 82:77–90

    Article  CAS  Google Scholar 

  40. Bartholomew CH (2001) Appl Catal A 212:17–60

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Th. Gesing and Dr. J. Birkenstock (University Bremen) for assistance with the XRD experiments and Dr. Karsten Thiel (Fraunhofer Institute IFAM, Bremen) and Dr. Volkmar Zielasek (University Bremen) for TEM measurements. We also gratefully acknowledge financial support for this work provided by the Deutsche Forschungsgemeinschaft (DFG) through Grant number BA1710/19-1 and the National Science Foundation, Division of Chemistry, through Grant number 1026712. BN is grateful for a stipend of the Deutsche Telekom Stiftung. TE is grateful for a graduate student fellowship from the University of Florida.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Helena Hagelin-Weaver or Marcus Bäumer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 534 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neumann, B., Elkins, T.W., Gash, A.E. et al. Sol–Gel Preparation of Samaria Catalysts for the Oxidative Coupling of Methane. Catal Lett 145, 1251–1261 (2015). https://doi.org/10.1007/s10562-015-1522-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-015-1522-7

Keywords

Navigation