Skip to main content
Log in

Dielectric investigation of high density polyethylene loaded by ZnO nanoparticles synthesized by sol–gel route

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Zinc oxide nanoparticles (ZnO NPs), with wurtzite structure, were synthesized using sol–gel route. Both the microstructure and morphology of the synthesized ZnO NPs were examined using X-ray diffraction, Fourier transform infrared and high-resolution transmission electron microscopy. The synthesized ZnO NPs up to 5 wt% were introduced to high density polyethylene (HDPE) using melt blending technique. The dielectric properties of the fabricated HDPE/ZnO nanocomposites were studied by measuring the dc dielectric breakdown strength at constant 1 kV/s ramp. The dielectric strength values were showed ZnO nanofiller concentration dependency. Enhancement in breakdown strength has been observed with addition of ZnO NPs and reached to 17 ± 3.1 % (for HDPE/1 wt% ZnO) with respect to the pure HDPE sample. The real part of the permittivity (\(\varepsilon^{\prime }\)) and the loss tangent (\(\tan \delta\)) dependency on filler concentration was studied under different applied frequency values from 1 kHz to 1 MHz. As well as the variation of the dielectric parameters (\(\varepsilon^{\prime }\) and \(\tan \delta\)) was studied throughout temperature range from room temperature to 120 °C.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Okubo H (2012) Enhancement of electrical insulation performance in power equipment based on dielectric material properties. IEEE Trans Dielectr Electr Insul 19:733–754

    Article  Google Scholar 

  2. Cao Y, Irwin PC, Younsi K (2004) The future of nanodielectrics in the electrical power Industry. IEEE Trans Dielectr Electr Insul 11:797–807

    Article  Google Scholar 

  3. Nelson Keith J (2010) Dielectric polymer nanocomposites. Springer, New York

    Book  Google Scholar 

  4. Kurimoto M, Okubo H, Kato K, Hanai M, Hoshina Y, Takei M, Hayakawa N (2010) Dielectric properties of epoxy/alumina nanocomposite influenced by control of micrometric agglomerates. IEEE Trans Dielectr Electr Insul 17:662–670

    Article  Google Scholar 

  5. Tanaka T (2005) Dielectric nanocomposites with insulating properties. IEEE Trans Dielectr Electr Insul 12:914–927

    Article  Google Scholar 

  6. Smith RC, Liang C, Landry M, Nelson JK, Schadler LS (2008) The mechanisms leading to the useful electrical properties of polymer nanodielectrics. IEEE Trans Dielectr Electr Insul 15:187–196

    Article  Google Scholar 

  7. Mansour SA, Elsad RA, Izzularab MA (2016) Dielectric properties enhancement of PVC nanodielectrics based on synthesized ZnO nanoparticles. J Polym Res 23:1–8

    Article  Google Scholar 

  8. Roy M, Nelson JK, MacCrone RK, Schadler LS (2005) Polymer nanocomposite dielectrics—the role of the interface. IEEE Trans Dielectr Electr Insul 12:629–643

    Article  Google Scholar 

  9. Khalil MS, Henk PO, Henriksen M (1990) The influence of titanium dioxide additive on the short-term DC breakdown strength of polyethylene. In: IEEE International symposium on electrical insulation, Montreal. Canada, pp 268–271

  10. Du BX, Liu HJ (2010) Effects of atmospheric pressure on tracking failure of gamma-ray irradiated polymer insulating materials. IEEE Trans Dielectr Electr Insul 17:541–547

    Article  Google Scholar 

  11. Bolhuis JP, Gulski E, Smit JJ (2002) Monitoring and diagnostic of transformer solid insulating. IEEE Trans Power Deliv 17:528–536

    Article  Google Scholar 

  12. Ocakoglu K, Mansour SA, Yildirimcan S, Al-Ghamdi AA, El-Tantawy F, Yakuphanoglu F (2015) Microwave-assisted hydrothermal synthesis and characterization of ZnO Nanorods. Spectrochim Acta Part A Mol Biomol Spectrosc 148:362–368

    Article  Google Scholar 

  13. Tian F, Lei Q, Wang X, Yi Wang (2012) Investigation of electrical properties of LDPE/ZnO nanocomposite dielectrics. IEEE Trans Dielectr Electr Insul 19:763–769

    Article  Google Scholar 

  14. Tjong SC, Liang G (2007) Electrical behavior of high density polyethylene/ZnO nano-composites. e-Polymers 7:444–453

    Google Scholar 

  15. Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur vonKolloidteilchen mittels Röntgenstrahlen. Nachr Ges Wiss Göttingen 26:98

    Google Scholar 

  16. Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Cryst 11:102

    Article  Google Scholar 

  17. Ahmed F, Kumar S, Arshi N, Anwar MS, Koo BH, Lee CG (2012) Doping effects of Co2+ ions on structural and magnetic properties of ZnO nanoparticles. Elsevier Microelectron Eng 89:129–132

    Article  Google Scholar 

  18. Djaja N, Montja D, Saleh R (2013) The effect of Co incorporation into ZnO nanoparticles. Adv Mater Phys Chem 3:33–41

    Article  Google Scholar 

  19. Hernandez A, Maya L, Mora ES, Sanchez EM (2007) Sol–gel synthesis, characterization and photocatalytic activity of mixed oxide ZnO–Fe2O3. J Sol-Gel Sci Technol 42:71–78

    Article  Google Scholar 

  20. Kumar S, Asokan K, Singh RK, Chatterjee S, Kanjilal D, Ghosh AK (2014) Investigations on structural and optical properties of ZnO and ZnO:Co nanoparticles under dense electronic excitations. RSC Adv 4:62123–62131

    Article  Google Scholar 

  21. Liu JJ, Yu HM, Zhou WL (2006) Fabrication of Mn-doped ZnO diluted magnetic semiconductor nanostructures by chemical vapor deposition. J Appl Phys 99:08M119

    Google Scholar 

  22. Fonseca CA, Ian Harrison IR (1998) An investigation of co-crystallization in LDPE/HDPE blends using DSC and TREF. Thermochim Acta 313:37–41

    Article  Google Scholar 

  23. Cai Y, Hu Y, Song L, Lu H, Chen Z, Fan W (2006) Preparation and characterizations of HDPE–EVA alloy/OMT nanocomposites/paraffin compounds as a shape stabilized phase change thermal energy storage material. Thermochim Acta 451:44–51

    Article  Google Scholar 

  24. Kodjie SL, Li L, Li B, Cai W, Li CY, Keating M (2006) Morphology and crystallization behavior of HDPE/CNT nanocomposite. J Macromol Sci Part B Phys 45:231–245

    Article  Google Scholar 

  25. Mansour SA (2013) Study of thermal stabilization for polystyrene/carbon nanocomposites via TG/DSC techniques. J Therm Anal Calorim 112:579–583

    Article  Google Scholar 

  26. Shah KS, Jain RC, Shrinet V, Singh AK, Bharambe DP (2009) High density polyethylene (HDPE) clay nanocomposite for dielectric applications. IEEE Trans Dielectr Electr Insul 16:853–861

    Article  Google Scholar 

  27. Danikas MG, Tanaka T (2009) Nanocomposites—a review of electrical treeing and breakdown. IEEE Electr Insul Mag 25:19–25

    Article  Google Scholar 

  28. Tanaka T, Matsunawa A, Ohki Y, Kozako M, Kohtoh M, Okabe S (2006) Treeing phenomenon in epoxy/alumina nanocomposite and interpretation by a multi-core model. IEEJ Trans Fund Mater 126:1128–1135

    Article  Google Scholar 

  29. Jonscher AK, Lacoste R (1984) On a cumulative model of dielectric breakdown in solids. IEEE Trans Electr Insul 19:567–577

    Article  Google Scholar 

  30. Singha S, Thomas MJ (2008) Dielectric properties of epoxy nanocomposites. IEEE Trans Dielectr Electr Insul 15:12–23

    Article  Google Scholar 

  31. Tomer V, Polizos G, Randall CA, Manias E (2011) Polyethylene nanocomposite dielectrics: implications of nanofiller orientation on high field properties and energy storage. J Appl Phys 109:074113

    Article  Google Scholar 

  32. Zhou W, Wang C, Ai T, Wu K, Zhao F, Gu H (2009) A novel fiber-reinforced polyethylene composite with added silicon nitrideparticles for enhanced thermal conductivity. Compos A 40:830–836

    Article  Google Scholar 

  33. Couderc H, David E (2014) Study of water diffusion in PE–SiO2 nanocomposites by dielectric spectroscopy. Trans Electr Electron Mater 15:291–296

    Article  Google Scholar 

  34. David E, Sami A, Fréchette MF (2011) Dielectric response of polyethylene loaded with nanoparticles of SiO2. In: Proceedings of international conference on insulated power cables JiCable, paper C.5.5

  35. Tuncer E, Sauers I, James DR, Ellis AR, Paranthaman MP, Aytug T, Sathyamurthy S, More KL, Li J, Goyal A (2007) Electrical properties of epoxy resin based nano-composites. Nanotechnology 18:025703–025706

    Article  Google Scholar 

  36. Ciuprina F, Plesa I, Notingher PV, Tudorache T, Panaitescu D (2008) Dielectric properties of nanodielectrics with inorganic fillers. In: Proceedings of the annual report conference on electrical insulation dielectric phenomena, pp 682–685

  37. Singha S, Thomas MJ (2009) Influence of filler loading on dielectric properties of epoxy-ZnO nanocomposites. IEEE Trans Dielectr Electr Insul 16:531–542

    Article  Google Scholar 

  38. Nelson JK, Hu Y (2005) Nanocomposite dielectrics—properties and implications. J Phys D 38:213–222

    Article  Google Scholar 

  39. Bistac S, Vallat MF, Schultz J (1999) Study of ethylene copolymers films by dielectric spectroscopy: influence of the polymer thickness on the glass-transition temperature. Prog Org Coat 37:49–56

    Article  Google Scholar 

  40. Panwar V, Mehra RM (2008) Analysis of electrical, dielectric, and electromagnetic interference shielding behavior of graphite filled high density polyethylene composites. Polym Eng Sci 10(1):2178–2187

    Article  Google Scholar 

  41. He ZW, Zhen CM, Liu XQ, Lan W, Xu DY, Wang YY (2004) Microstructural characterization of low dielectric silica xerogel film. Thin Solid Films 462:168–171

    Article  Google Scholar 

  42. Tepper T, Berger S (1999) Correlation between microstructure, particle size, dielectric constant, and electrical resistivity of nano-size amorphous SiO2 powder. Pergamon NanoStruct Mater 11:1081–1089

    Article  Google Scholar 

  43. Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. A. Mansour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansour, S.A., Elsad, R.A. & Izzularab, M.A. Dielectric investigation of high density polyethylene loaded by ZnO nanoparticles synthesized by sol–gel route. J Sol-Gel Sci Technol 80, 333–341 (2016). https://doi.org/10.1007/s10971-016-4109-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4109-x

Keywords

Navigation