Skip to main content
Log in

Novel sol–gel-derived hardystonite-based biomagnetic nanoparticles for hyperthermia applications

  • Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Unique nanosized designed ceramic powders, Fe-doped hardystonite (Fe-HT) with the chemical composition of Ca1.85Fe0.15ZnSi2O7 (0.15Fe-HT) and Ca1.75Fe0.25ZnSi2O7 (0.25Fe-HT), were synthesized by the sol–gel method in order to develop a multifunctional bioactive powder for hyperthermic and tissue engineering applications. Characterization techniques such as X-ray diffraction analysis, transmission electron microscopy, Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy were used to investigate the structural characterization of the obtained powders. The results showed that nanocrystalline single-phase Fe-HT powders were successfully synthesized by sol–gel method. The prepared nanopowders had structural properties such as crystallite size (~53 nm), crystallinity degree (~55 %) and lattice strain (~0.355 %) for 0.15Fe-HT and crystallite size (~40 nm), crystallinity degree (~41 %) and lattice strain (~0.401 %) for 0.25Fe-HT. The obtained Fe-HT nanopowders are expected to be a suitable candidate for tissue engineering and also hyperthermia-based cancer therapy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Seiler JG, Johnson J (2000) lliac crest autogenous bone grafting: donor site complications. J South Orthop Assoc 9:91–97

    Google Scholar 

  2. Greenwald AS, Boden SD, Goldberg VM, Khan Y, Laurencin CT, Rosier RN (2001) Bonegraft substitutes: facts, fictions, and applications. J Bone Joint Surg Am 83:98–103

    Google Scholar 

  3. Nayab SN, Jones FH, Olsen I (2005) Effects of calcium ion implantation on human bone cell interaction with titanium. Biomaterials 26:4717–4727

    Article  Google Scholar 

  4. Carlisle EM (1986) Silicon as an essential trace element in animal nutrition. Ciba Found Symp 121:123–139

    Google Scholar 

  5. Yamaguchi M, Oishi H, Suketa Y (1987) Stimulatory effect of zinc on bone formation in tissue culture. Biochem Pharmacol 36:4007–4012

    Article  Google Scholar 

  6. Zreiqat H, Ramaswamy Y, Wu C, Paschalidis A, Lu Z, James B, Birke O, McDonald M, Little D, Dunstan CR (2010) The incorporation of strontium and zinc into a calcium–silicon ceramic for bone tissue engineering. Biomaterials 31:3175–3184

    Article  Google Scholar 

  7. Corchero JL, Villaverde A (2009) Biomedical applications of distally controlled magnetic nanoparticles. Trends Biotechnol 27:468–476

    Article  Google Scholar 

  8. Echeverria C, Soares P, Robalo A, Pereira L, Novo CMM, Ferreira I, Borges JP (2015) Mater Des 5:745–751

    Google Scholar 

  9. Gudovan D, Balaure PC, Mihăiescu DE, Fudulu A, Purcăreanu B, Radu M (2015) Curr Pharm Des 21:6038–6054

    Article  Google Scholar 

  10. Long NV, Yang Y, Teranishi T, Thi CM, Cao Y, Nogami M (2015) J Nanosci Nanotechnol 15:10091–10107

    Article  Google Scholar 

  11. Maver U, Bele M, Makovec D, Campelj S, Jamnik J, Gaberscek M (2009) J Magn Magn Mater 321:3187–3192

    Article  Google Scholar 

  12. Ito A, Kobayashi T (2008) Intracellular hyperthermia using magnetic nanoparticles: a novel method for hyperthermia cancer. Jpn Soc Therm Med 24:113–129

    Article  Google Scholar 

  13. Kalambur VS, Han B, Hammer BE, Shield TW, Bischof JC (2005) In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications. Nanotechnology 16:1221–1233

    Article  Google Scholar 

  14. Mornet S, Vasseur S, Grasset F, Duguet E (2005) Magnetic nanoparticle design for medical diagnosis and therapy. J Biosci Bioeng 100:1–11

    Article  Google Scholar 

  15. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49

    Article  Google Scholar 

  16. Wu H, Wang T, Bohn M, Lin F, Spector M (2010) Novel magnetic hydroxyapatite nanoparticles as non-viral vectors for the glial cell line-derived neurotrophic factor gene. Adv Funct Mater 20:67–77

    Article  Google Scholar 

  17. Li G, Zhou D, Lin Y, Pan T, Chen G, Yin Q (2010) Synthesis and characterization of magnetic bioactive glass–ceramics containing Mg ferrite for hyperthermia. Mater Sci Eng, C 30:148–153

    Article  Google Scholar 

  18. Le Renard PE, Jordan O, Faes A, Petri-Fink A, Hofmann H, Rufenacht D (2010) The in vivo performance of magnetic particle-loaded injectable, in situ gelling, carriers for the delivery of local hyperthermia. Biomaterials 31:691–705

    Article  Google Scholar 

  19. Aminian A, Solati-Hashjin M, Samadikuchaksaraei A, Bakhshi F, Gorjipour F, Farzadi A, Moztarzadeh F, Schmücker M (2011) Synthesisof silicon-substituted hydroxyapatite by a hydrothermal method with two different phosphorous sources. Ceram Int 37:1219–1229

    Article  Google Scholar 

  20. Ahmadi T, Monshi A, Mortazavi V, Fathi MH, Sharifi S, HashemiBeni B, MoghareAbed A, Kheradmandfard M, Sharifnabi A (2014) Synthesis and dissolution behavior of nanosized silicon and magnesium co-doped fluorapatite obtained by high energy ballmilling. Ceram Int 40:8341–8349

    Article  Google Scholar 

  21. Roohani-Esfahani SI, Chen Y, Shi J, Zreiqat H (2013) Fabrication and characterization of a new, strong and bioactive ceramic scaffold for bone regeneration. Mater Lett 107:378–381

    Article  Google Scholar 

  22. Singh N, Jenking GJ, Asadi R, Doak SH (2010) Nano Rev 1:53–58

    Article  Google Scholar 

  23. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, San Diego, p 284

    Google Scholar 

  24. Landi E, Tampieri A, Celotti G, Sprio S (2000) Densification behavior and mechanisms of synthetic hydroxyapatites. J Eur Ceram Soc 20:2377–2387

    Article  Google Scholar 

  25. Laugier J, Bochu B (2009) CELREF V3, Laboratoire des Matériaux et du Génie Physique Ecole Nationale Supérieure de Physique de Grenoble (INPG) Domaine Univer- sitaire BP 46, 38402 Saint Martin d’Hères, Cell parameters refinement program from powder diffraction diagram

  26. Sreekanth RP, Chakradhar BM, Nagabhushana GT, Chandrappa KP, Ramesh JL (2004) Rao, solution combustion derived nanocrystalline Zn2SiO4: Mn phosphors: a spectroscopic view. J Chem Phys 121:10250–10259

    Article  Google Scholar 

  27. Agathopoulos S, Tulyaganova DU, Venturaa JMG, Kannana S, Sarantic A, Karakassidesc MA (2006) Structural analysis and devitrification of glasses based on the CaO–MgO–SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives. J Non-Cryst Solids 352:322–328

    Article  Google Scholar 

  28. Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds part A: theory and applications in inorganic chemistry, 6th edn. Wiley, Hoboken, p 156

    Google Scholar 

  29. Fernandez-Jimenez A, Palomo A (2005) Mid-infrared spectroscopic studies of alkali activated fly ash structure. Microporous Mesoporous Mater 86:207–214

    Article  Google Scholar 

  30. Ma JG, Liu YC, Xu CS, Liu YX, Shao CL, Xu HY, Zhang JY, Lu YM, Shen DZ, Fan XW (2005) Preparation and characterization of ZnO particles embedded in SiO2 matrix by reactive magnetron sputtering. J Appl Phys 97:6

    Google Scholar 

  31. Aminian A, Solati-hashjin M, Samadikuchaksaraei A, Bakhshi F (2011) Synthesis of silicon-substituted hydroxyapatite by a hydrothermal method with two different phosphorous sources. Ceram Int 37:1219–1229

    Article  Google Scholar 

  32. Wu C, Fan W, Zhu Y, Gelinsky M, Chang J, Cuniberti G, Albrecht V, Friis T, Xiao Y (2011) Multifunctional magnetic mesoporous bioactive glass scaffolds with a hierarchical pore structure. Acta Biomater 7:3563–3572

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support to this research by the Isfahan University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Farzin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzin, A., Emadi, R. & Fathi, M. Novel sol–gel-derived hardystonite-based biomagnetic nanoparticles for hyperthermia applications. J Sol-Gel Sci Technol 80, 402–410 (2016). https://doi.org/10.1007/s10971-016-4100-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4100-6

Keywords

Navigation