Skip to main content
Log in

Preparation and characterization of all-oxide CuFeO2:Zn/ZnO:Al transparent heterojunction diode by using all-chemical solution deposition

  • Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Transparent p-n heterojunction thin-film diodes have been fabricated through an all-chemical solution deposition as a low-cost and large-scale method. In this order, we firstly studied the structural, optical and electrical properties of fabricated n-ZnO:Al and p-CuFeO2:Zn layers. The deposited ZnO:Al thin film showed a transmission more than 90 % in the visible range, and its smooth surface provided a suitable substrate for preparation of the diode. The current–voltage characteristic of the CuFeO2:Zn/ZnO:Al p-n junction demonstrated rectifying property. The diode with a total thickness of 1240 nm exhibited around 60 % optical transparency in the visible region which makes it suitable for invisible electronic and optoelectronic devices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baydogan N, Karacasu O, Cimenoglu H (2012) J Sol–Gel Sci Technol 61:620

    Article  Google Scholar 

  2. Deng Z, Fang X, Wu S, Dong W, Shao J, Wang S, Lei M (2014) J Sol–Gel Sci Technol 71:297

    Article  Google Scholar 

  3. Begum NJ, Ravichandran K (2013) J Phys D Appl Phys 74:841

    Google Scholar 

  4. Li G, Zhu X, Lei H, Jiang H, Song W, Yang Z, Dai J, Sun Y, Pan X, Dai S (2010) J Sol–Gel Sci Technol 53:641

    Article  Google Scholar 

  5. Tate J, Jayaraj MK, Draeseke AD, Ulbrich T, Sleight AW, Vanaja KA, Nagarajan R, Wager JF, Hoffman RL (2002) Thin Solid Films 411:119

    Article  Google Scholar 

  6. Benhaliliba M, Benouis CE, Aida MS, Yakuphanoglu F, Juarez AS (2010) J Sol–Gel Sci Technol 55:335

    Article  Google Scholar 

  7. Scanlon DO, Watson GW (2011) J Mater Chem 21:3655

    Article  Google Scholar 

  8. Jayalakshmi V, Murugan R, Palanivel B (2005) J Alloys Compd 388:19

    Article  Google Scholar 

  9. Kawazoe H, Yasukawa M, Hyodo H, Kurita M, Yanagi H, Hosono H (1997) Nature 389:939

    Article  Google Scholar 

  10. Choi DH, Moon SJ, Hong JS, An SY, Shim IB, Kim CS (2009) Thin Solid Films 517:3987

    Article  Google Scholar 

  11. Chen HY, Wu JH (2012) Thin Solid Films 520:5029

    Article  Google Scholar 

  12. Terada N, Tanaka Y, Tabata Y, Katsumata K, Kikkawa A, Mitsuda S (2006) J Phys Soc Jpn 75:113702

    Article  Google Scholar 

  13. Omeiri S, Bellal B, Bouguelia A, Bessekhouad Y, Trari M (2009) J Solid State Electrochem 13:1395

    Article  Google Scholar 

  14. Sato H, Minami T, Takata S, Yamada T (1993) Thin Solid Films 236:27

    Article  Google Scholar 

  15. Hosono H, Ohta H, Hayashi H, Orita M, Hirano M (2002) J Cryst Growth 496:237

    Google Scholar 

  16. Ohta H, Orita M, Hirano M (2001) J Appl Phys 89:5720

    Article  Google Scholar 

  17. Jayaraj MK, Draeseke AD, Tate J, Sleight AW (2001) Thin Solid Films 397:244

    Article  Google Scholar 

  18. Hoffman RL, Wager JF, Jayaraj MK, Tate J (2001) J Appl Phys 90:5763

    Article  Google Scholar 

  19. Tonooka K, Kikuchi N (2006) Thin Solid Films 515:2415

    Article  Google Scholar 

  20. Yanagi H, Ueda K, Ohta H, Orita M, Hirano M, Hosono H (2001) Solid State Commun 121:15

    Article  Google Scholar 

  21. Aoki T, Hatanaka Y, Look DC (2000) Appl Phys Lett 76:3257

    Article  Google Scholar 

  22. Hwang DK, Bang KH, Jeong MC, Myoung JM (2003) J Cryst Growth 254:449

    Article  Google Scholar 

  23. Lan W, Cao WL, Zhang M, Liu XQ, Wang YY, Xie EQ, Yan H (2009) J Mater Sci 44:1594

    Article  Google Scholar 

  24. Kim SY, Lee JH, Kim JJ, Heo YW (2012) Curr Appl Phys 12:123

    Article  Google Scholar 

  25. Dong P, Zhang M, Dong G, Zhao X, Yan H (2008) J Electrochem Soc 155:319

    Article  Google Scholar 

  26. Chiu SH, Huang JCA (2013) Surf Coat Technol 231:239

    Article  Google Scholar 

  27. Xu L, Li X (2010) J Cryst Growth 312:851

    Article  Google Scholar 

  28. Sengupta J, Sahoo RK, Mukherjee CD (2012) Mater Lett 83:84

    Article  Google Scholar 

  29. Lin KM, Tsai P (2007) Mater Sci Eng B 139:81

    Article  Google Scholar 

  30. Ding J, Chen H, Zhao X, Ma S (2010) J Phys Chem Solids 71:346

    Article  Google Scholar 

  31. Asemi M, Ghanaatshoar M (2014) J Sol–Gel Sci Technol 70:416

    Article  Google Scholar 

  32. Lin KM, Chen HC, Chen YY, Chou KY (2010) J Sol–Gel Sci Technol 55:369

    Article  Google Scholar 

  33. Jiang HF, Zhu XB, Lei HC, Li G, Yang ZR, Song WH, Dai JM, Sun YP, Fu YK (2011) J Alloys Compd 509:1768

    Article  Google Scholar 

  34. Caglar Y, Caglar M, Ilican S (2012) Curr Appl Phys 12:963

    Article  Google Scholar 

  35. Deng Z, Fang X, Wu S, Zhao Y, Dong W, Shao J, Wang S (2013) J Alloys Compd 577:658

    Article  Google Scholar 

  36. Zheng SY, Jiang GS, Su JR, Zhu CF (2006) Mater Lett 60:3871

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ghanaatshoar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asemi, M., Mameghani, H. & Ghanaatshoar, M. Preparation and characterization of all-oxide CuFeO2:Zn/ZnO:Al transparent heterojunction diode by using all-chemical solution deposition. J Sol-Gel Sci Technol 80, 201–207 (2016). https://doi.org/10.1007/s10971-016-4067-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4067-3

Keywords

Navigation