Skip to main content
Log in

Investigation of transmittance and thermal conductivity properties of silica gels for application as transparent heat insulation materials

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In several applications, silica gels are widely applied as solid phases in chromatography, paint thickeners, filters or molecular sieves. New studies investigate the possible application of silica gels as transparent heat insulation materials (TIMs) at low and elevated temperatures. This study investigates the thermal insulation properties and favorable conditions for silica gels for using as TIMs. To this end, silica sol was gelled and the resulting silica gel was aged before it was either hydrothermally treated or fired. The thermal conductivity was measured with the hot disk method at room temperature. The lowest thermal conductivity was achieved by a hydrothermal treatment performed at 150 °C and 5-h dwell time. The best results for the simultaneous optimization of the transmittance and thermal conductivity were as well reached by a hydrothermal treatment at 150 °C with 5-h dwell time. Firing of silica gels did not improve the thermal insulation properties.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wittwer V (1992) J Non-Cryst Solids 145:233–236

    Article  Google Scholar 

  2. Titulaer MK, den Exter MJ, Talsma H, Jansen J, Geus JW (1994) J Non-Cryst Solids 170:2

    Google Scholar 

  3. Titulaer MK, Jansen J, Geus JW (1994) J Non-Cryst Solids 170:1

    Article  Google Scholar 

  4. Christy AA (2011) Ind Eng Chem Res 50:9

    Article  Google Scholar 

  5. Pramanik A, Bhattacharjee K, Mitra MK, Das GC, Duari B (2013) Int J Mod Eng Res 3:5543–5549

    Google Scholar 

  6. Li Y, Fu S-Y, Li Y-Q, Pan Q-Y, Xu G, Yue C-Y (2007) Compos Sci Technol 67:11–12

    Google Scholar 

  7. Battisha IK (2001) Egypt J Solids 24:1

    Google Scholar 

  8. Perry CC, Li X (1991) J Chem Soc Faraday Trans 5:761–766

    Article  Google Scholar 

  9. Bisson A, Rigacci A, Lecomte D, Achard P (2004) J Non-Cryst Solids 350:379–384

    Article  Google Scholar 

  10. Huang C-L, Feng Y-H, Zhang X-X, Li J, Wang G (2013) Chin Phys B 22:6

    Google Scholar 

  11. Bippus L, Jaber M, Lebeau B, Schleich D, Scudeller Y (2014) Microporous and Mesoporous Mater 190:109–116

    Article  Google Scholar 

  12. He Y-L, Xie T (2015) Appl Therm Eng 81:28–50

    Article  Google Scholar 

  13. Klenert F, Fruhstorfer J, Aneziris CG, Gross U, Trimis D, Reichenbach I, Vijay D, Horn A (2014) J Sol-Gel Sci Technol 75:602–616

    Article  Google Scholar 

  14. Iler RK (1979) The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry. Wiley, Canada

    Google Scholar 

  15. Shi F, Wang L, Liu J, Zeng M (2007) J Mater Sci Technol 23:3

    Google Scholar 

  16. Davis PJ, Deshpande R, Smith DM, Brinker CJ, Assink RA (1994) J Non-Cryst Solids 167:3

    Article  Google Scholar 

  17. Brinker CJ, Mukherjee SP (1981) J Mater Sci 16:1980–1988

    Article  Google Scholar 

  18. Skibina V (2012) Bestimmung der Wärmeleitfähigkeit von nichtdurchströmten zellularen Metallen

  19. Maleki H, Durães L, Portugal A (2014) Microporous and Mesoporous Mater 197:116–129

    Article  Google Scholar 

  20. Sumirat I, Ando Y, Shimamura S (2006) J Porous Mater 13:3–4

    Article  Google Scholar 

  21. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, Boston, pp 360–363, 368–369, 562–567

  22. Yoldas BE (1993) J Sol Gel Sci Technol 1:65–77

    Article  Google Scholar 

  23. Krol DM, van Lierop JG (1984) J Non-Cryst Solids 63:1–2

    Article  Google Scholar 

  24. Skubiszewska-Zięba J, Charmas B, Leboda R, Staszczuk P, Kowalczyk P, Oleszczuk P (2003) Mater Chem Phys 78:2

    Google Scholar 

  25. Schmitz JO (2000) Zum Einfluss der hydrothermalen Alterung auf die Sorptionseigenschaften von Trägergelen für die heterogene Katalyse, pp 15–17

  26. Ohmacht R, Matus Z (1984) Chromatographia 19:473–476

    Article  Google Scholar 

  27. Chertov VM, Tsyrina VV, Kaganovskii VA (1987) Colloid J USSR 49(1):179–180

    Google Scholar 

  28. Alvarez FX, Jou D, Sellitto A (2010) Appl Phys Lett 97:3

    Article  Google Scholar 

  29. Vasil’ev SZ, Letichevskii VI, Mal’ter VL, Solntsev MY, Yusova GM, Kostenok OM, Sokolova NI (1979) Chem Pet Eng 15:33–35

    Article  Google Scholar 

  30. Sharafian A, Fayazmanesh K, McCague C, Bahrami M (2014) Int J Heat Mass Transf 79:64–71

    Article  Google Scholar 

  31. Kondo S, Tomoi K, Pak C (1979) Bull Chem Soc Jpn 52:7

    Google Scholar 

  32. R Development Core Team (2010) R: A language and environment for statistical computing, Vienna

  33. Montgomery DC (2001) Design and analysis of experiments. Wiley, New York

    Google Scholar 

  34. Kondo S, Fujiwara F, Muroya M (1976) J Colloid Interface Sci 55:2

    Article  Google Scholar 

  35. Liu G, Zhou B, Du A, Shen J, Yu Q (2013) J Porous Mater 20:5

    Google Scholar 

  36. Zhao Y, Tang GH, Du M (2015) Int J Therm Sci 89:1303–1312

    Article  Google Scholar 

  37. Tajiri K, Igarashi K, Nishio T (1995) J Non-Cryst Solids 186:83–87

    Article  Google Scholar 

  38. Reim M, Beck A, Körner W, Petricevic R, Glora M, Weth M, Schliermann T, Fricke J, Schmidt C, Pötter FJ (2002) Sol Energy 72:1

    Article  Google Scholar 

  39. Bhagat SD, Hirashima H, Venkateswara Rao A (2007) J Mater Sci 42:9

    Article  Google Scholar 

  40. Zhao J-J, Duan Y-Y, Wang X-D, Wang B-X (2012) J Non-Cryst Solids 358:10

    Google Scholar 

  41. Fricke J, Emmerling A (1992) J Am Ceram Soc 75:8

    Article  Google Scholar 

  42. Wei G, Liu Y, Zhang X, Yu F, Du X (2011) Int J Heat Mass Transf 54:11–12

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Almut Hegewald from the Institute of Thermal Engineering for conducting the thermal conductivity measurements and to Dr. Wulf for discussing the experimental results. Furthermore, the authors would like to gratefully acknowledge the financial support of the European Commission through the European Social Fund (ESF) and the Saxon State Ministry of Science and the Arts for the project ANWan (No. SAB 100109651).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friederike Klenert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klenert, F., Fruhstorfer, J. & Aneziris, C.G. Investigation of transmittance and thermal conductivity properties of silica gels for application as transparent heat insulation materials. J Sol-Gel Sci Technol 77, 315–324 (2016). https://doi.org/10.1007/s10971-015-3856-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3856-4

Keywords

Navigation