Skip to main content
Log in

Novel organic–inorganic hybrid materials based on epoxy-functionalized silanes

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Hybrid materials comprising inorganic glasses and organic polymers were investigated as potential replacements for diglycidyl ether of bisphenol-A to improve the thermomechanical properties of available composites. An epoxy-functionalized silane, 3-glycidoxypropyltrimethoxysilane (GPTMS), was employed to synthesize organic–inorganic hybrid materials (OIHMs) via a sol–gel process. The oxirane ring in GPTMS was cross-linked by compounds including an aliphatic amine, diethylenetriamine, amine-functionalized silane, n-(2-aminoethyl)-3-aminopropyltrimethoxysilane, tertiary amine, 2,4,6-tris(dimethylaminomethyl)phenol (DMP-30), and an acid anhydride, hexahydrophthalic anhydride. OIHMs derived from a difunctional organosilane, (3-glycidoxypropyl)methyldimethoxysilane, were also synthesized to compare the mechanical properties with OIHMs derived from GPTMS. Structural characterization of cured OIHMs was performed using a combination of attenuated total reflectance spectroscopy (FTIR-ATR) and 29Si solid-state nuclear magnetic resonance. Differential scanning calorimetry and thermogravimetric analysis were used to clarify the thermal properties. The thermomechanical properties and cross-link density were evaluated using dynamic mechanical thermal analysis (DMTA). In this study, it was evident that the presence of inorganic networks provided a significant improvement of the thermomechanical properties, where the glass transition temperature typically increases by 20 °C and the storage modulus at 150 °C by nearly eight times that of neat epoxy resin. An increase in glass transition temperature, end-use temperature, and the thermomechanical behavior of OIHMs was observed and quantified using DMTA. These results corresponded to calculated increases in cross-link density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ratna D (2005) Epoxy composites: impact resistance and flame retardancy. Rapra Technology Ltd, Shrewsbury

    Google Scholar 

  2. Hyer MW (2009) Stress analysis of fiber-reinforced composite materials. DEStech Publications Inc, Pensylvania

    Google Scholar 

  3. Park SJ, Seo MK (2011) Interface Sci Technol 18:501–629

    Article  Google Scholar 

  4. Bunsell AR, Renard J (2005) Fundamentals of fibre reinforced composite materials. Institute of Physics Publishing, Bristol

    Book  Google Scholar 

  5. Gull VE (1996) Structure and properties of conducting polymer composites. VSP BV, The Netherlands

    Google Scholar 

  6. Landry CJT, Coltrain BK, Wesson JA, Zumbulyadis N (1992) Polymer 33:1496–1506

    Article  Google Scholar 

  7. Landry CJT, Coltrain BK, Brady BK (1992) Polymer 33:1486

    Article  Google Scholar 

  8. Pathak SS, Khanna AS (2008) Prog Org Coat 62:409–416

    Article  Google Scholar 

  9. Ershad-Langroudi A, Gharazi S, Rahimi A, Ghasemi D (2009) App Surf Sci 255:5746–5754

    Article  Google Scholar 

  10. Philipp G, Schmidt H (1984) J Non Cryst Solids 63:283–292

    Article  Google Scholar 

  11. Winkler RP, Arpac E, Schirra H, Sepeur S, Wegner I, Schmidt H (1999) Thin Solid Film 351:209–211

    Article  Google Scholar 

  12. Arkles B (2001) MRS Bull 26:402–408

    Article  Google Scholar 

  13. Gireesh KB, Jena KK, Allauddin S, Radhika KR, Narayan R, Raju KVSN (2010) Prog Org Coat 68:165–172

    Article  Google Scholar 

  14. Donley MS, Mantz RA, Khramov AN, Balbyshev VN, Kasten LS, Gaspar DJ (2003) Prog Org Coat 47:401–415

    Article  Google Scholar 

  15. Davis SR, Brough AR, Atkinson A (2003) J Non Cryst Solids 315:197–205

    Article  Google Scholar 

  16. Chattopadhyay DK, Mishra AK, Sreedhar B, Raju KVSN (2006) Polym Degrad Stab 91:1837–1849

    Article  Google Scholar 

  17. Innocenzi P, Sassi A, Brusatin G, Guglielmi M, Favretto D, Bertani R, Venzo A, Babonneau F (2001) Chem Mater 13:3635–3643

    Article  Google Scholar 

  18. Guglielmi M, Brusatin G, Della Giustina G (2007) J Non Cryst Solids 353:1681–1687

    Article  Google Scholar 

  19. Sakka S, Yoko T (1992) In: Reisfeld R, Jørgensen CK (eds) Chemistry, spectroscopy and applications of sol–gel glasses. Springer, Germany

    Google Scholar 

  20. Shen S, Sun P, Li W, Parikh AN, Hu D (2010) Langmuir 26:7708–7716

    Article  Google Scholar 

  21. Shajesh P, Smitha S, Aravind PR, Warrier KGK (2009) J Colloid Interface Sci 336:691–697

    Article  Google Scholar 

  22. Innocenzi P, Esposto M, Maddalena A (2001) J Sol–Gel Sci Technol 20:293–301

    Article  Google Scholar 

  23. Fu S, Wu P, Han Z (2002) Compos Sci Technol 62:3–8

    Article  Google Scholar 

  24. Mammeri F, Bourhis EL, Rozes L, Sanchez C (2005) J Mater Chem 15:3787–3811

    Article  Google Scholar 

  25. Malzbender J, den Toonder JMJ, Balkenende AR, de With G (2002) Mater Sci Eng 36:47–48

    Article  Google Scholar 

  26. Mammeri F, Rozes L, Sanchez C (2003) J Sol–Gel Sci Technol 26:413–417

    Article  Google Scholar 

  27. Thermal Analysis: Measurement of Tg by DSC (2013) Perkin Elmer. http://www.perkinelmer.com. Accessed 19 July 2013

  28. Menczel JD, Prime RB (2009) Thermal analysis of polymers. Wiley, New Jersey

    Book  Google Scholar 

  29. Hare CH (1998) Protective coating: fundamental of chemistry and composition. The Society for Protective Coating, USA

    Google Scholar 

  30. Mileca CA, Bogatu C, Duţă A (2011) Bulletin of the Transylvania University of Braşov. Transylvania University Press, Transylvania

    Google Scholar 

  31. Chen WY, Wang YZ, Kuo SW, Huang CF, Tung PH, Chang FC (2004) Polym 45:6897–6908

    Article  Google Scholar 

  32. Sánchez-Soto M, Pagés P, Lacorte T, Briceño K, Carrasco F (2007) Compos Sci Technol 67:1974–1985

    Article  Google Scholar 

  33. Brinker CJ, Sherer GW (1985) J Non Cryst Solids 70:301–322

    Article  Google Scholar 

  34. Bourget L, Corriu RJP, Leclercq D, Mutin PH, Vioux A (1998) J Non Cryst Solids 242:81–91

    Article  Google Scholar 

  35. Saunders KJ (1973) Organic polymer chemistry: an introduction to the organic chemistry of adhesives, fibres, paints, plastics, and rubbers. Redwood Press Ltd, Great Britain

    Book  Google Scholar 

  36. Lam JCK, Huang MYM, Tan H, Mo Z, Mai Z (2011) J Vac Sci Technol A 29(5):0515131–0515136

    Article  Google Scholar 

  37. Rauter A, Perše LS, Orel B, Bengű B, Sunetci O, Vuk AS (2013) J Electroanal Chem 703:97–107

    Article  Google Scholar 

  38. Launer PJ (1987) In: Arkels B (ed) Silicone compounds register and review. Petrarch Systems, Pennsylvania

    Google Scholar 

  39. Jing SY, Lee HJ, Choi CK (2002) J Korean Phys Soc 41:769–773

    Google Scholar 

  40. Davidovits J (2005) Geopolymer green chemistry and sustainable development solutions. Institut Géopolymère, France

    Google Scholar 

  41. Ni L, Moreau N, Chemtob A, Croutxé-Barghorn C (2012) J Sol–Gel Sci Technol 64(2):500–509

    Article  Google Scholar 

  42. Chemtob A, Peter M, Belon C, Dietlin C, Croutxé-Barghorn C, Vidal L, Rigolet S (2010) J Mater Chem 20:9104–9112

    Article  Google Scholar 

  43. Gardin S, Bozio R, Brusatin G, Della Giustina G, Giorgetti E, Guglielmi M, Signorini R (2006) Proc SPIE 6192:321–329

    Google Scholar 

  44. Anastassopoulou JD (1991) In: Rizzarelli E, Theophanides T (eds) Chemistry and properties of biomolecular systems. Springer, Berlin

    Google Scholar 

  45. Ahn D, Jeong YC, Lee S, Lee J, Heo Y, Park JK (2009) Opt Express 17:16603–16612

    Article  Google Scholar 

  46. Bistričić L, Borjanović V, Mikac L, Dananić V (2013) Vib Spectrosc 68:1–10

    Article  Google Scholar 

  47. Frampton MB, Séguin JP, Marquardt D, Harroun TA, Aelisko PM (2013) J Mol Catal B Enzym 85–86:149–155

    Article  Google Scholar 

  48. Mao Z, Yan CQ (2000) J Appl Polym Sci 81:2142–2150

    Article  Google Scholar 

  49. Gao A, Zhao Z, Ou Y, Qi A, Wang F (1996) Polym Int 40:187–192

    Article  Google Scholar 

  50. Wei Y, Bakthavatchalam R, Yang D, Whitecar CK (1991) Polym Prepr (Am Chem Soc, Div Polym Chem) 32:503

  51. Liu J, Xu T, Gong M, Fu Y (2005) J Membr Sci 264:87–96

    Article  Google Scholar 

  52. Liu J, Xu T, Fu Y (2005) J Non Cryst Solids 351:3050–3059

    Article  Google Scholar 

  53. Gizdavic-Nikolaidis MR, Edmonds NR, Bolt CJ, Easteal AJ (2008) Curr App Phys 8:300–303

    Article  Google Scholar 

  54. Guo R, Hu C, Pan F, Wu H, Jiang Z (2006) J Membr Sci 281:454–462

    Article  Google Scholar 

  55. Mammeri F, Le Bourhis E, Rozes L, Sanchez C (2005) J Mater Chem 15:3792–3795

    Article  Google Scholar 

  56. Ochi M, Takahashi R (2001) J Polym Sci Part B Polym Phys 39:1071–1084

    Article  Google Scholar 

  57. Kaiser T (1989) Prog Polym Sci 14:408

    Article  Google Scholar 

  58. Boveri AB (1989) Prog Polym Sci 14:373–450

    Article  Google Scholar 

  59. Hill LW (1997) Prog Org Coat 31:235–243

    Article  Google Scholar 

  60. (2007) Pigment & Resin Technology. doi:10.1108/prt.2007.12936ead.001

  61. Corriu R, Anh NT (2009) Molecular chemistry of sol–gel derived nanomaterials. Wiley, UK

    Book  Google Scholar 

  62. Alonso B, Massiot D, Valentini M, Kidchob T, Innocenzi P (2008) J Non Cryst Solids 354:1618

    Article  Google Scholar 

  63. Brinker CJ, Scherer GW (1991) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, California

    Google Scholar 

  64. Bein T, Carver RF, Farlee RD, Stucky GD (1988) J Am Chem Soc 110:4546–4553

    Article  Google Scholar 

  65. 29Si NMR some practical aspects (2003). Gelest 208–222. http://www.pascal-man.com/periodic-table/29Si.pdf. Accessed 2 June 2014

Download references

Acknowledgments

Manatchanok Sitthiracha would like to gratefully acknowledge Ministry of Science and Innovation (NZ) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manatchanok Sitthiracha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitthiracha, M., Kilmartin, P.A. & Edmonds, N.R. Novel organic–inorganic hybrid materials based on epoxy-functionalized silanes. J Sol-Gel Sci Technol 76, 542–551 (2015). https://doi.org/10.1007/s10971-015-3804-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3804-3

Keywords

Navigation